The microbial ecosystem residing in the human gut is believed to play an important role in horizontal exchange of virulence and antibiotic resistance genes that threatens human health. While the diversity of gut-microorganisms and their genetic content has been studied extensively, high-resolution insight into the plasticity, and selective forces shaping individual genomes is scarce. In a longitudinal study, we followed the dynamics of co-existing lineages in an infant not receiving antibiotics. Using whole genome sequencing, we observed large genomic deletions, bacteriophage infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant lineage was maintained for months, demonstrating that antibiotic resistance genes can disseminate and persist in the gut microbiome; even in absence of antibiotic selection. Furthermore, through competition assays, we suggest that the resistant transconjugant can persist through a fitness advantage in the mouse gut in spite of a fitness cost . Our findings highlight the dynamic nature of the human gut microbiota and provide the first genomic description of antibiotic resistance gene transfer between bacteria in the unperturbed human gut. These results exemplify that conjugative plasmids, harboring resistance determinants, can transfer and persists in the gut in the absence of antibiotic treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622998 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.01852 | DOI Listing |
Stem Cell Res Ther
December 2024
National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.
Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.
Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.
J Nutr
December 2024
Nottingham NIHR Biomedical Research Centre and Nottingham Digestive Disease Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom. Electronic address:
Background: Recent studies show that the increase in breath hydrogen (BH) and symptoms after ingestion of inulin is reduced by co-administering psyllium.
Objectives: To determine if slowing delivery of inulin to the colon by administering it in divided doses would mimic the effect of psyllium. Primary endpoint was the BH area under the curve AUC.
Cell Host Microbe
December 2024
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:
Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C.
View Article and Find Full Text PDFCurr Rheumatol Rep
December 2024
Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, Canada.
Purpose Of Review: The canonical pathogenesis of spondyloarthritis (SpA) involves inflammation driven by HLA-B27, type 3 immunity, and gut microbial dysregulation. This review based on information presented at the SPARTAN meeting highlights studies on the pathogenesis of SpA from the past year, focusing on emerging mechanisms such as the roles of microbe-derived metabolites, microRNAs (miRNAs) and cytokines in plasma exosomes, specific T cell subsets, and neutrophils.
Recent Findings: The induction of arthritis in a preclinical model through microbiota-driven alterations in tryptophan catabolism provides new insights as to how intestinal dysbiosis may activate disease via the gut-joint axis.
Microbiome
December 2024
Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Studies have reported clinical heterogeneity between right-sided colon cancer (RCC) and left-sided colon cancer (LCC). However, none of these studies used multi-omics analysis combining genetic regulation, microbiota, and metabolites to explain the site-specific difference.
Methods: Here, 494 participants from a 16S rRNA gene sequencing cohort (50 RCC, 114 LCC, and 100 healthy controls) and a multi-omics cohort (63 RCC, 79 LCC, and 88 healthy controls) were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!