CDDO and ATRA Instigate Differentiation of IMR32 Human Neuroblastoma Cells.

Front Mol Neurosci

Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India.

Published: September 2017

Neuroblastoma is the most common solid extra cranial tumor in infants. Improving the clinical outcome of children with aggressive tumors undergoing one of the multiple treatment options has been a major concern. Differentiating neuroblastoma cells holds promise in inducing tumor growth arrest and treating minimal residual disease. In this study, we investigated the effect of partial PPARγ agonist 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) on human neuroblastoma IMR32 cells. Our results demonstrate that treatment with low concentration of CDDO and particularly in combination with all trans retinoic acid (ATRA) induced neurite outgrowth, increased the percentage of more than two neurites bearing cells, and decreased viability in IMR32 cells. These morphological changes were associated with an increase in expression of bonafide differentiation markers like β3-tubulin and Neuron Specific Enolase (NSE). The differentiation was accompanied by a decrease in the expression of whose amplification is known to contribute to the pathogenesis of neuroblastoma. MYCN is known to negatively regulate NMYC downstream-regulated gene 1 (NDRG1) in neuroblastomas. down-regulation induced by CDDO correlated with increased expression of NDRG1. CDDO decreased Anaplastic Lymphoma Kinase () mRNA expression without affecting its protein level, while ATRA significantly down-regulated ALK. Antagonism of PPARγ receptor by T0070907 meddled with differentiation inducing effects of CDDO as observed by stunted neurite growth, increased viability and decreased expression of differentiation markers. Our findings indicate that IMR32 differentiation induced by CDDO in combination with ATRA enhances, differentiation followed by cell death via cAMP-response-element binding protein (CREB) independent and PPARγ dependent signaling mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623017PMC
http://dx.doi.org/10.3389/fnmol.2017.00310DOI Listing

Publication Analysis

Top Keywords

human neuroblastoma
8
neuroblastoma cells
8
imr32 cells
8
cddo combination
8
differentiation markers
8
induced cddo
8
cddo
7
differentiation
7
neuroblastoma
5
cells
5

Similar Publications

Retroperitoneal teratomas are rare neoplasms in neonates, presenting with nonspecific symptoms and variable clinical features, making diagnosis challenging. Radiological investigations, particularly fetal ultrasound and contrast-enhanced computed tomography, play a critical role in their detection. Differential diagnoses include neuroblastoma, adrenal hemorrhage, and congenital cystic lesions, which share overlapping clinical and imaging features.

View Article and Find Full Text PDF

Aureobasidium melanogenum is a black yeast-like fungus that occurs frequently both in nature and in domestic environments. It is becoming increasingly important as an opportunistic pathogen. Nevertheless, its effect on human cells has not yet been studied.

View Article and Find Full Text PDF

Although static magnetic fields (SMFs) have been reported to induce only minimal biological effects, it has been proposed that they may alter the effects of other agents, such as ionizing radiation. We sham-exposed or exposed human SH-SY5Y neuroblastoma cells to 0.5-, 1.

View Article and Find Full Text PDF

Carbonic anhydrase IX inhibition as a path to treat neuroblastoma.

Br J Pharmacol

January 2025

Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.

Background And Purpose: Tumour hypoxia frequently presents a major challenge in the treatment of neuroblastoma (NBL). The neuroblastoma cells produce carbonic anhydrase IX (CA IX), an enzyme crucial for the survival of cancer cells in low-oxygen environments.

Experimental Approach: We designed and synthesised a novel high-affinity inhibitor of CA IX.

View Article and Find Full Text PDF

Protective Effects of Heat-Killed Lactobacilli against Plasma-Induced Neurotoxicity in Multiple Sclerosis.

Probiotics Antimicrob Proteins

January 2025

Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

Heat-killed lactobacilli seem to have protective effects against oxidative stress and neurotoxicity. This study aimed to evaluate the antioxidant properties of specific heat-killed lactobacilli extracts and determine their neuroprotective effects against the neurotoxicity induced by blood plasma from people with multiple sclerosis (MS). The antioxidant activity of the three heat-killed lactobacilli was measured using the DPPH assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!