Alteration in cellular energy metabolism plays a critical role in the development and progression of cancer. Targeting metabolic pathways for cancer treatment has been investigated as potential preventive or therapeutic methods. Eugenol (Eu), a major volatile constituent of clove essential oil mainly obtained from Syzygium, has been reported as a potential chemopreventive drug. However, the mechanism by which Eu regulates cellular energy metabolism is still not well defined. This study was designed to determine the effect of Eu on cellular energy metabolism during early cancer progression employing untransformed and H-ras oncogene transfected MCF10A human breast epithelial cells. Eu showed dose-dependent selective cytotoxicity toward MCF10A-ras cells but exhibited no apparent cytotoxicity in MCF10A cells. Treatment with Eu also significantly reduced intracellular ATP levels in MCF10A-ras cells but not in MCF10A cells. This effect was mediated mainly through inhibiting oxidative phosphorylation (OXPHOS) complexs and the expression of fatty acid oxidation (FAO) proteins including PPARα, MCAD and CPT1C by downregulating c-Myc/PGC-1β/ERRα pathway and decreasing oxidative stress in MCF10A-ras cells. These results indicate a novel mechanism involving the regulation of cellular energy metabolism by which Eu may prevent breast cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634997PMC
http://dx.doi.org/10.1038/s41598-017-13505-xDOI Listing

Publication Analysis

Top Keywords

mcf10a-ras cells
16
cellular energy
16
energy metabolism
16
oxidative phosphorylation
8
fatty acid
8
acid oxidation
8
cancer progression
8
mcf10a cells
8
cells
7
eugenol inhibits
4

Similar Publications

Introduction: Metabolic adaptability, including glucose metabolism, enables cells to survive multiple stressful environments. Glycogen may serve as a critical storage depot to provide a source of glucose during times of metabolic demand during the metastatic cascade; therefore, understanding glycogen metabolism is critical. Our goal was to determine mechanisms driving glycogen accumulation and its role in metastatic (MCF10CA1a) compared to nonmetastatic (MCF10A-) human breast cancer cells.

View Article and Find Full Text PDF

An emerging hallmark of cancer is cellular metabolic reprogramming to adapt to varying cellular environments. Throughout the process of metastasis cancer cells gain anchorage independence which confers survival characteristics when detached from the extracellular matrix (ECM). Previous work demonstrates that the bioactive metabolite of vitamin D, 1α,25-dihydroxyvitamin D (1,25[OH]D), suppresses cancer progression, potentially by suppressing the ability of cells to metabolically adapt to varying cellular environments such as ECM detachment.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (STAT3) has been considered as a potential target for development of anticancer therapeutics. Here, we report a novel mechanism by which the cyclopentenone prostaglandin, 15-deoxy-Δ -prostaglandin J (15d-PGJ ) functions as an allosteric inhibitor of STAT3. 15d-PGJ inhibits phosphorylation, dimerization, nuclear translocation, and transcriptional activity of STAT3 in H-Ras-transformed human mammary epithelial cells (MCF10A-Ras) through the Michael addition reaction at cysteine 259 of STAT3.

View Article and Find Full Text PDF

Transforming growth factor-β (TGF-β) is a secreted multifunctional factor that plays a key role in intercellular communication. Perturbations of TGF-β signaling can lead to breast cancer. TGF-β elicits its effects on proliferation and differentiation via specific cell surface TGF-β type I and type II receptors (i.

View Article and Find Full Text PDF

An Electrophilic Deguelin Analogue Inhibits STAT3 Signaling in H--Transformed Human Mammary Epithelial Cells: The Cysteine 259 Residue as a Potential Target.

Biomedicines

October 2020

Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Sciences and Technology, Seoul National University, Seoul 08826, Korea.

Signal transducer and activator of transcription 3 (STAT3) is a point of convergence for numerous oncogenic signals that are often constitutively activated in many cancerous or transformed cells and some stromal cells in the tumor microenvironment. Persistent STAT3 activation in malignant cells stimulates proliferation, survival, angiogenesis, invasion, and tumor-promoting inflammation. STAT3 undergoes activation through phosphorylation on tyrosine 705, which facilitates its dimerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!