The chaperonins (CPNs) are megadalton sized hollow complexes with two cavities that open and close to encapsulate non-native proteins. CPNs are assigned to two sequence-related groups that have distinct allosteric mechanisms. In Group I CPNs a detachable co-chaperone, GroES, closes the chambers whereas in Group II a built-in lid closes the chambers. Group I CPNs have a bacterial ancestry, whereas Group II CPNs are archaeal in origin. Here we describe open and closed crystal structures representing a new phylogenetic branch of CPNs. These Group III CPNs are divergent in sequence and structure from extant CPNs, but are closed by a built-in lid like Group II CPNs. A nucleotide-sensing loop, present in both Group I and Group II CPNs, is notably absent. We identified inter-ring pivot joints that articulate during ring closure. These Group III CPNs likely represent a relic from the ancestral CPN that formed distinct bacterial and archaeal branches.Chaperonins (CPNs) are ATP-dependent protein-folding machines. Here the authors present the open and closed crystal structures of a Group III CPN from the thermophilic bacterium Carboxydothermus hydrogenoformans, discuss its mechanism and structurally compare it with Group I and II CPNs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635000 | PMC |
http://dx.doi.org/10.1038/s41467-017-00980-z | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
Background/objectives: Crickets are recognized as an alternative source of chitosan. This study aimed to assess the potential of cricket-derived chitosan as a natural source to develop chitosan nanoparticles (CNPs).
Methods: Chitosan were isolated from different cricket species, including , , and .
Neuron
November 2024
VIB-KULeuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), 1070 Brussels, Belgium. Electronic address:
Human-specific (HS) genes have been implicated in brain evolution, but their impact on human neuron development and diseases remains unclear. Here, we study SRGAP2B/C, two HS gene duplications of the ancestral synaptic gene SRGAP2A, in human cortical pyramidal neurons (CPNs) xenotransplanted in the mouse cortex. Downregulation of SRGAP2B/C in human CPNs led to strongly accelerated synaptic development, indicating their requirement for the neoteny that distinguishes human synaptogenesis.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
Conjugated polymer nanoparticles (CPNs) can be synthesized by a Suzuki-Miyaura cross-coupling miniemulsion polymerization to give stable dispersions with a high concentration of uniform nanoparticles. However, large amounts of added surfactants are required to stabilize the miniemulsion and prevent the aggregation of the nanoparticles. Removal of the excess surfactant is challenging, and residual surfactant in thin films deposited from these dispersions can reduce the performance of optoelectronic devices.
View Article and Find Full Text PDFACS Omega
April 2024
Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck Str. 1, 21502 Geesthacht, Germany.
J Colloid Interface Sci
April 2024
School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!