Narrow atomically precise graphene nanoribbons hold great promise for electronic and optoelectronic applications, but the previously demonstrated nanoribbon-based devices typically suffer from low currents and mobilities. In this study, we explored the idea of lateral extension of graphene nanoribbons for improving their electrical conductivity. We started with a conventional chevron graphene nanoribbon, and designed its laterally extended variant. We synthesized these new graphene nanoribbons in solution and found that the lateral extension results in decrease of their electronic bandgap and improvement in the electrical conductivity of nanoribbon-based thin films. These films were employed in gas sensors and an electronic nose system, which showed improved responsivities to low molecular weight alcohols compared to similar sensors based on benchmark graphitic materials, such as graphene and reduced graphene oxide, and a reliable analyte recognition. This study shows the methodology for designing new atomically precise graphene nanoribbons with improved properties, their bottom-up synthesis, characterization, processing and implementation in electronic devices.Atomically precise graphene nanoribbons are a promising platform for tailored electron transport, yet they suffer from low conductivity. Here, the authors devise a strategy to laterally extend conventional chevron nanoribbons, thus achieving increased electrical conductivity and improved chemical sensing capabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635063 | PMC |
http://dx.doi.org/10.1038/s41467-017-00692-4 | DOI Listing |
Environ Toxicol Chem
January 2025
School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China.
In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.
Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan.
This study examines the influence of nanofillers on the ultraviolet (UV) penetration depth of photopolymer resins used in stereolithography (SLA) 3D printing, and their impact on printability. Three nanofillers, multiwalled carbon nanotubes (MWCNT), graphene nanoplatelets (xGNP), and boron nitride nanoparticles (BNNP), were incorporated into a commercially available photopolymer resin to prepare nanocomposite formulations. The UV penetration depth (Dp) was assessed using the Windowpane method, revealing a significant reduction with the addition of nanofillers.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Green Technology Group, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most of this plastic is expected to become waste, potentially resulting in billions of tons of accumulated PW by 2060.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61200 Brno, Czech Republic.
Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!