Induction of suppressor of cytokine signaling 3 via HSF-1-HSP70-TLR4 axis attenuates neuroinflammation and ameliorates postoperative pain.

Brain Behav Immun

Department of Pharmacy, Sir Run Run Shaw Hospital Affiliated to Nanjing Medical University, Jiangsu 211166, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China. Electronic address:

Published: February 2018

Postoperative pain is a common form of acute pain that, if not managed effectively, can become chronic pain. Evidence has shown that glia, especially microglia, mediate neuroinflammation, which plays a vital role in pain sensitization. Moreover, toll-like receptor 4 (TLR4), the tumor necrosis factor receptor (TNF-R), the interleukin-1 receptor (IL-1R), and the interleukin-6 receptor (IL-6R) have been considered key components in central pain sensitization and neuroinflammation. Therefore, we hypothesized that activation of the body's endogenous "immune brakes" will inhibit these receptors and achieve inflammation tolerance as well as relieve postoperative pain. After searching for potential candidates to serve as this immune brake, we identified and focused on the suppressor of cytokine signaling 3 (SOCS3) gene. To regulate SOCS3 expression, we used paeoniflorin to induce heat shock protein 70 (HSP70)/TLR4 signaling. We found that paeoniflorin significantly induced SOCS3 expression both in vitro and in vivo and promoted the efflux of HSP70 from the cytoplasm to the extracellular environment. Furthermore, paeoniflorin markedly attenuated incision-induced mechanical allodynia, and this effect was abolished by small interfering RNAs targeting SOCS3. These findings demonstrated an effective and safe strategy to alleviate postoperative pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2017.10.006DOI Listing

Publication Analysis

Top Keywords

postoperative pain
16
suppressor cytokine
8
cytokine signaling
8
pain
8
pain sensitization
8
socs3 expression
8
induction suppressor
4
signaling hsf-1-hsp70-tlr4
4
hsf-1-hsp70-tlr4 axis
4
axis attenuates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!