Spring viremia of carp virus (SVCV) is highly contagious and pathogenic to cyprinid fish, causing enormous economic losses in aquaculture. Efficient and economic prophylactic measure against is the most pressing desired for the common carp farming industry. In this research, single-walled carbon nanotubes (SWCNTs) as a candidate DNA vaccine carrier was administrated via bath (1, 5, 10, 20, 40 mg L) or injection (1, 4, 8, 12, 20 μg) in common carp juvenile, and the different immune treatments to induce immunoprotective effect was analyzed. The results showed that higher levels of transcription and expression of G gene could be detected in muscle, spleen and kidney tissues via bath administration or intramuscular injection in SWCNTs-pEGFP-G treatment groups compared with naked pEGFP-G treatment groups. Meanwhile, complement activity, superoxide dismutase activity, alkaline phosphatase activity, immune-related genes (especially the TNF-α) and antibody levels were significantly enhanced in fish immunized with DNA vaccine combined with SWCNTs. The relative percentage survival were significantly enhanced in fish bathed with SWCNTs-pEGFP-G vaccine and the relative percentage survival reached to 57.5% in SWCNTs-pEGFP-G group than that of naked pEGFP-G (40.0%) at the highest vaccine dose (40 mg L) after 22 days of post infection, and fish in bath immunization group at a concentration of 40 mg L could reach the similar relative percentage survival in injection group at a dose of 12 μg. This study suggest that ammonium-functionalized SWCNTs is the promising carrier for DNA vaccine and might be used to vaccinate large-scale juvenile fish by bath administration approach in aquaculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2017.10.012DOI Listing

Publication Analysis

Top Keywords

dna vaccine
16
common carp
12
relative percentage
12
percentage survival
12
single-walled carbon
8
carbon nanotubes
8
spring viremia
8
viremia carp
8
carp virus
8
bath administration
8

Similar Publications

Background: The BCG vaccine induces trained immunity, an epigenetic-mediated increase in innate immune responsiveness. Therefore, this clinical trial evaluated if BCG-induced trained immunity could decrease coronavirus disease 2019 (COVID-19)-related frequency or severity.

Methods: A double-blind, placebo-controlled clinical trial of healthcare workers randomized participants to vaccination with BCG TICE or placebo (saline).

View Article and Find Full Text PDF

Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention.

View Article and Find Full Text PDF

Hepatitis B virus infection and its treatment in Eastern Ethiopia.

World J Hepatol

January 2025

Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan.

Hepatitis B virus (HBV) infection causes acute and chronic hepatitis, compensated and decompensated cirrhosis, and hepatocellular carcinoma worldwide. The actual status of HBV infection and its treatment in certain regions of Asian and African countries, including Ethiopia, has not been well-documented thus far. Antiviral therapy for HBV infection can prevent the progression of HBV-related liver diseases and decrease the HBV-related symptoms, such as abdominal symptoms, fatigue, systemic symptoms and others.

View Article and Find Full Text PDF

This bibliometric and visualization study provides a comprehensive analysis of global research hotspots and trends in DNA vaccine research from 2014 to 2024. By employing data sourced from the Web of Science Core Collection, we identified a total of 3,600 articles. Our analysis reveals a declining trend in annual publications.

View Article and Find Full Text PDF

Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!