Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Visuospatial skills can be enhanced thanks to specific intervention programs, but the additional benefits of neuromodulation on these skills have not been fully investigated yet, although transcranial direct current stimulation (tDCS) has demonstrated to boost the effects of cognitive trainings. When combining cognitive intervention with neuromodulation, the time-window of tDCS application in relation to task execution has to be taken into account since it has been shown to affect stimulation outcomes. The aim of the present experiment was to investigate the influence of tDCS in enhancing the effects of a training for visuospatial skills. We hypothesized that tDCS applied during training execution (online) would improve the cognitive performance at a larger extent than tDCS applied before training execution (offline). Participants received anodal tDCS over the dorsolateral prefrontal cortex during (online) or before (offline) the completion of the training. A control sham condition was included. Visuospatial abilities were measured 24 h before (day 1, pre-test) and 24 h after (day 3, post-test) the stimulation and training session (day 2). tDCS enhanced gains for mental folding performance when applied during the execution of the training (online). Participants' mental rotation and mental folding performance improved from pre-test to post-test regardless of the stimulation condition. However participants in the online tDCS condition showed the largest improvement in mental folding performance. Findings indicate that tDCS enhanced the effects of the training when applied during its execution, showing cumulative positive aftereffects on visuospatial performance 24 h after the stimulation session. The time-dependent effect points out the importance of the time-window of tDCS application in influencing behavior when combined with cognitive programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2017.10.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!