Background: Hemodynamic balance in the heart-brain axis is increasingly recognized as a crucial factor in maintaining functional and structural integrity of the brain and thereby cognitive functioning. Patients with heart failure (HF), carotid occlusive disease (COD), and vascular cognitive impairment (VCI) present themselves with complaints attributed to specific parts of the heart-brain axis, but hemodynamic changes often go beyond the part of the axis for which they primarily seek medical advice. The Heart-Brain Study hypothesizes that the hemodynamic status of the heart and the brain is an important but underestimated cause of VCI. We investigate this by studying to what extent hemodynamic changes contribute to VCI and what the mechanisms involved are. Here, we provide an overview of the design and protocol.

Methods: The Heart-Brain Study is a multicenter cohort study with a follow-up measurement after 2 years among 645 participants (175 VCI, 175 COD, 175 HF, and 120 controls). Enrollment criteria are the following: 1 of the 3 diseases diagnosed according to current guidelines, age ≥50 years, no magnetic resonance contraindications, ability to undergo cognitive testing, and independence in daily life. A core clinical dataset is collected including sociodemographic factors, cardiovascular risk factors, detailed neurologic, cardiac, and medical history, medication, and a physical examination. In addition, we perform standardized neuropsychological testing, cardiac, vascular and brain MRI, and blood sampling. In subsets of participants we assess Alz-heimer biomarkers in cerebrospinal fluid, and assess echocardiography and 24-hour blood pressure monitoring. Follow-up measurements after 2 years include neuropsychological testing, brain MRI, and blood samples for all participants. We use centralized state-of-the-art storage platforms for clinical and imaging data. Imaging data are processed centrally with automated standardized pipelines.

Results And Conclusions: The Heart-Brain Study investigates relationships between (cardio-)vascular factors, the hemodynamic status of the heart and the brain, and cognitive impairment. By studying the complete heart-brain axis in patient groups that represent components of this axis, we have the opportunity to assess a combination of clinical and subclinical manifestations of disorders of the heart, vascular system and brain, with hemodynamic status as a possible binding factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730112PMC
http://dx.doi.org/10.1159/000480738DOI Listing

Publication Analysis

Top Keywords

heart-brain study
16
cognitive impairment
12
heart-brain axis
12
hemodynamic status
12
vascular cognitive
8
brain cognitive
8
hemodynamic changes
8
status heart
8
heart brain
8
neuropsychological testing
8

Similar Publications

Introduction: Ischaemic heart disease (IHD) and cerebrovascular disease are leading causes of morbidity and mortality worldwide. Cerebral small vessel disease (CSVD) is a leading cause of dementia and stroke. While coronary small vessel disease (coronary microvascular dysfunction) causes microvascular angina and is associated with increased morbidity and mortality.

View Article and Find Full Text PDF

Background: Hypertension is a serious chronic disease that can significantly lead to various cardiovascular diseases, affecting vital organs such as the heart, brain, and kidneys. Our goal is to predict the risk of new onset hypertension using machine learning algorithms and identify the characteristics of patients with new onset hypertension.

Methods: We analyzed data from the 2011 China Health and Nutrition Survey cohort of individuals who were not hypertensive at baseline and had follow-up results available for prediction by 2015.

View Article and Find Full Text PDF

Prevalence and control of hypertension in COVID-19 positive cases.

J Family Med Prim Care

December 2024

Health Education and Promotion, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Alziziah Makkah, Saudi Arabia.

Background: The coronavirus disease (COVID-19) is an infectious disease caused by the newly discovered SARS-CoV-2 virus. Patients diagnosed with COVID-19 experience several complications including hypertension or elevated blood pressure which is a serious medical condition that significantly increases the risks of heart, brain, and kidney diseases.

Objectives: To assess the prevalence and control of hypertension in COVID-19 patients.

View Article and Find Full Text PDF

The mineralocorticoid receptor (MR) is a nuclear transcription factor that plays a critical role in regulating fluid, electrolytes, blood pressure, and hemodynamic stability. In conditions such as chronic kidney disease (CKD) and heart failure (HF), MR overactivation leads to increased salt and water retention, inflammatory and fibrotic gene expression, and organ injury. The MR is essential for transcriptional regulation and is implicated in metabolic, proinflammatory, and pro-fibrotic pathways.

View Article and Find Full Text PDF

Vitamin B, or pantothenate, forms the molecular "backbone" of coenzyme A (CoA), which is essential for more than a hundred biochemical reactions in humans. Genetic defects that disrupt the CoA pathway cause severe degenerative disorders that may be amenable to treatment with compounds that can bypass the metabolic block. The pantothenate metabolite, 4'-phosphopantetheine (4'PPT), can serve as an alternative substrate for cellular CoA synthesis and may therefore be an essential nutrient in managing disorders where pantothenate cannot meet all metabolic requirements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!