Spontaneous, synchronous epileptiform discharges were recorded in both CA3 and CA1 subfields of rat hippocampal slices perfused with Mg2+-free medium. Surgical separation of the two areas abolished the spontaneous discharges only in the CA1 subfield. However, epileptiform responses in the isolated CA1 subfield could still be evoked by orthodromic stimulation. Intracellularly these stimulus-induced responses were characterized by a depolarization associated with a burst of action potentials. Stimulation of the alveus still evoked a hyperpolarizing potential, presumably a recurrent inhibitory postsynaptic potential (IPSP) in CA1 pyramidal cells. Both spontaneous and stimulus-induced epileptiform discharges were blocked by the selective antagonist of N-methyl-D-aspartate (NMDA) receptors DL-2-amino-phosphonovalerate (APV). APV also reduced the amplitude and duration of the IPSP induced by alveus stimulation. Thus, epileptiform discharges evoked by lowering Mg2+ in the CA1 subfield are associated with a preservation of inhibitory mechanisms. Furthermore the effects exerted by APV upon the IPSP implicate that NMDA receptors might be involved in the neuronal circuit responsible for the hyperpolarizing IPSP generated by CA1 pyramidal neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-3940(88)90542-3DOI Listing

Publication Analysis

Top Keywords

ca1 subfield
16
epileptiform discharges
12
rat hippocampal
8
hippocampal slices
8
inhibitory postsynaptic
8
ca1 pyramidal
8
nmda receptors
8
ca1
7
low-magnesium epilepsy
4
epilepsy rat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!