Accurately identifying and targeting the human reservoir of malaria parasitemia is critical for malaria control, and requires a reliable and sensitive diagnostic method. Loop-mediated isothermal amplification (LAMP) is increasingly used to diagnose submicroscopic parasitemia. Although most published studies report the sensitivity of LAMP compared with nested polymerase chain reaction (PCR) as ≥ 80%, they have failed to use a consistent, sensitive diagnostic as a comparator. We used cross-sectional samples from children and adults in Tororo, Uganda, a region with high but declining transmission due to indoor residual spraying, to characterize the sensitivity and specificity of pan- LAMP for detecting submicroscopic infections. We compared LAMP results targeting a mitochondrial DNA sequence conserved in all species, performed on DNA extracted from dried blood spots, to those of a gold standard quantitative PCR assay targeting the gene acidic terminal sequence of (ATS qPCR), performed on DNA extracted from 200 µL of whole blood. Using LAMP and ATS qPCR increased the detection of parasitemia 2- to 5-fold, compared with microscopy. Among microscopy-negative samples, the sensitivity of LAMP was 81.5% for detecting infection ≥ 1 parasites/µL. However, low density infections were common, and LAMP failed to identify more than half of all infections diagnosed by ATS qPCR, performing with an overall sensitivity of 44.7% for detecting submicroscopic infections ≥ 0.01 parasites/µL. Thus, although the LAMP assay is more sensitive than microscopy, it missed a significant portion of the submicroscopic reservoir. These findings have important implications for malaria control, particularly in settings where low-density infections predominate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805042PMC
http://dx.doi.org/10.4269/ajtmh.17-0225DOI Listing

Publication Analysis

Top Keywords

ats qpcr
12
loop-mediated isothermal
8
isothermal amplification
8
malaria control
8
sensitive diagnostic
8
lamp
8
sensitivity lamp
8
detecting submicroscopic
8
submicroscopic infections
8
performed dna
8

Similar Publications

Abortive transcripts (ATs) refer to nascent 2-10 nucleotides (nt) RNAs released by RNA polymerases before synthesizing productive RNAs. The quantitative detection of ATs is important for studying transcription initiation and the biological function of ATs; however, no method is available for the qualitative and quantitative assessment of such ultra-short oligonucleotides (typically shorter than 11 nt) in vivo at present, even with the LNA probes, the detection limit can only reach 11 nt. Here, we demonstrated the base stacking hybridization assisted ligation (BSHAL) technique, combined with TaqMan-MGB qPCR, can detect 4-10 nt ATs with a specificity of nucleotide resolution and a sensitivity of approximately 10 pM.

View Article and Find Full Text PDF

Objective: Treatment options for acquired tracheal stenosis (ATS) are limited due to a series of pathophysiological changes including inflammation and cell proliferation. Micro ribonucleic acid-21-5p (miR-21-5p) may promote the excessive proliferation of fibroblasts. However, various types of fibrosis can be prevented with pirfenidone (PFD).

View Article and Find Full Text PDF

Telomere Length (TL) and integrity is significantly associated with age-related disease, multiple genetic and environmental factors. We observe mouse genomic DNA (gDNA) isolation methods to have a significant impact on average TL estimates. The canonical qPCR method does not measure TL directly but via the ratio of telomere repeats to a single copy gene (SCG) generating a T/S ratio.

View Article and Find Full Text PDF

Detection of RNA targets is typically achieved through RT-qPCR or RNAseq. RT-qPCR is rapid but limited in number and complexity of targets detected, while RNAseq is high-throughput but takes multiple days. We demonstrate simultaneous amplification and detection of 28 distinct RNA targets from a single unsplit purified RNA sample in under 40 minutes using our convective array PCR (caPCR) technology.

View Article and Find Full Text PDF

Despite the recent advances in 3D-printing, it is often difficult to fabricate implants that optimally fit a defect size or shape. There are some approaches to resolve this issue, such as patient-specific implant/scaffold designs based on CT images of the patients, however, this process is labor-intensive and costly. Especially in developing countries, affordable treatment options are required, while still not excluding these patient groups from potential material and manufacturing advances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!