CLIC1 belongs to the ubiquitous family of chloride intracellular ion channel proteins that are evolutionarily conserved across species. The CLICs are unusual in that they exist mainly as soluble proteins but possess the intriguing property of spontaneous conversion from the soluble to an integral membrane-bound form. This conversion is regulated by the membrane lipid composition, especially by cholesterol, together with external factors such as oxidation and pH. However, the precise physiological mechanism regulating CLIC1 membrane insertion is currently unknown. In this study, X-ray and neutron reflectivity experiments were performed to study the interaction of CLIC1 with different phospholipid monolayers prepared using POPC, POPE, or POPS with and without cholesterol in order to better understand the regulatory role of cholesterol in CLIC1 membrane insertion. Our findings demonstrate for the first time two different structural orientations of CLIC1 within phospholipid monolayers, dependent upon the absence or presence of cholesterol. In phospholipid monolayers devoid of cholesterol, CLIC1 was unable to insert into the lipid acyl chain region. However, in the presence of cholesterol, CLIC1 showed significant insertion within the phospholipid acyl chains occupying an area per protein molecule of 6-7 nm with a total CLIC1 thickness ranging from ∼50 to 56 Å across the entire monolayer. Our data strongly suggests that cholesterol not only facilitates the initial docking or binding of CLIC1 to the membrane but also promotes deeper penetration of CLIC1 into the hydrophobic tails of the lipid monolayer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b02872 | DOI Listing |
Sci Adv
October 2024
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
The major female ovarian hormone, 17β-estradiol (E), can alter neuronal excitability within milliseconds to regulate a variety of physiological processes. Estrogen receptor-α (ERα), classically known as a nuclear receptor, exists as a membrane-bound receptor to mediate this rapid action of E, but the ionic mechanisms remain unclear. Here, we show that a membrane channel protein, chloride intracellular channel protein-1 (Clic1), can physically interact with ERα with a preference to the membrane-bound ERα.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
March 2024
Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China. Electronic address:
Gliomas are highly heterogeneous brain tumours that are resistant to therapies. The molecular signatures of gliomas play a high-ranking role in tumour prognosis and treatment. In addition, patients with gliomas with a mesenchymal phenotype manifest overpowering immunosuppression and sophisticated resistance to treatment.
View Article and Find Full Text PDFAutophagy
April 2024
Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA.
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autophagic lysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease.
View Article and Find Full Text PDFBiomolecules
September 2023
School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia.
Chloride intracellular ion channel (CLIC) proteins exist as both soluble and integral membrane proteins, with CLIC1 capable of shifting between two distinct structural conformations. New evidence has emerged indicating that members of the CLIC family act as moonlighting proteins, referring to the ability of a single protein to carry out multiple functions. In addition to their ion channel activity, CLIC family members possess oxidoreductase enzymatic activity and share significant structural and sequence homology, along with varying overlaps in their tissue distribution and cellular localization.
View Article and Find Full Text PDFCommun Med (Lond)
September 2023
Division of Hematology & Hematological Malignancies, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
Background: The Montreal platelet syndrome kindred (MPS) with VWF p.V1316M mutation (2B-VWDMPS) is an extremely rare disorder. It has been associated with macrothrombocytopenia, spontaneous platelet clumping, mucocutaneous, and other bleeding, which can be largely prevented by von Willebrand factor (VWF) concentrate infusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!