Protein tyrosine sulfation (PTS) is a key modulator of extracellular protein-protein interaction (PPI), which regulates principal biological processes. For example, the capsid protein VP1 of enterovirus 71 (EV71) specifically interacts with sulfated P-selectin glycoprotein ligand-1 (PSGL-1) to facilitate virus invasion. Currently available methods cannot be used to directly observe PTS-induced PPI. In this study, atomic force microscopy was used to measure the interaction between sulfated or mutated PSGL-1 and VP1. We found that the binding strength increased by 6.7-fold following PTS treatment on PSGL-1 with a specific antisulfotyrosine antibody. Similar results were obtained when the antisulfotyrosine antibody was replaced with the VP1 protein of EV71; however, the interaction forces of VP1 were only approximately one-third of those of the antisulfotyrosine antibody. We also found that PTS on the tyrosine-51 residue of glutathione S-transferases fusion-PSGL-1 was mainly responsible for the PTS-induced PPI. Our results contribute to the fundamental understanding of PPI regulated through PTS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.7b02373 | DOI Listing |
Methods Mol Biol
September 2023
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
Protein engineering has brought advances to industrial processes, biomaterials, nanotechnology, biosensors, and biomedical applications. This chapter will focus on the engineering of Src Homology 2 domains (SH2) to act as an antibody mimetic for the recognition of sulfotyrosine-containing peptides or proteins. In comparison to anti-sulfotyrosine antibodies, SH2 mutants have much smaller size and can be heterologously expressed and purified in large quantity at low cost.
View Article and Find Full Text PDFACS Chem Biol
August 2021
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
Protein tyrosine -sulfation is an essential post-translational modification required for effective biological processes such as hemostasis, inflammatory response, and visual phototransduction. Because of its unstable nature under mass spectrometry conditions and residing on low-abundance cell surface proteins, sulfated tyrosine (sulfotyrosine) residues are difficult to detect or analyze. Enrichment of sulfotyrosine-containing proteins (sulfoproteins) from complex biological samples are typically required before analysis.
View Article and Find Full Text PDFBiol Open
October 2018
Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000 Mons, Belgium
Many marine invertebrates use adhesive secretions to attach to underwater surfaces and functional groups borne by their adhesive proteins and carbohydrates, such as catechols and phosphates, play a key role in adhesion. The occurrence of sulfates as recurrent moieties in marine bioadhesives suggests that they could also be involved. However, in most cases, their presence in the adhesive material remains speculative.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2017
Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300.
Protein tyrosine sulfation (PTS) is a key modulator of extracellular protein-protein interaction (PPI), which regulates principal biological processes. For example, the capsid protein VP1 of enterovirus 71 (EV71) specifically interacts with sulfated P-selectin glycoprotein ligand-1 (PSGL-1) to facilitate virus invasion. Currently available methods cannot be used to directly observe PTS-induced PPI.
View Article and Find Full Text PDFAnal Chem
March 2017
Department of Biological Science and Technology, National Chiao Tung University, 75 Boai Street, Hsinchu 300, Taiwan.
Protein tyrosine sulfation (PTS) is a widespread posttranslational modification that induces intercellular and extracellular responses by regulating protein-protein interactions and enzymatic activity. Although PTS affects numerous physiological and pathological processes, only a small fraction of the total predicted sulfated proteins has been identified to date. Here, we localized the potential sulfation sites of Escherichia coli proteins on a proteome microarray by using a 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase-coupled tyrosylprotein sulfotransferase (TPST) catalysis system that involves in situ PAPS generation and TPST catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!