Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677251 | PMC |
http://dx.doi.org/10.1021/jacs.7b08627 | DOI Listing |
J Am Chem Soc
September 2024
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
Living crystallization-driven self-assembly (CDSA) has emerged as an efficient strategy to generate nanofibers of π-conjugated polymers (CPNFs) in a controlled fashion. However, reports of donor-acceptor (D-A) heterojunction CPNFs are extremely rare. The preparation of these materials remains a challenge due to the lack of rational design guidelines for the D-A π-conjugated units.
View Article and Find Full Text PDFACS Macro Lett
September 2023
School of Engineering Science, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi 782-8502, Japan.
RSC Adv
August 2023
Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
Sequences can have a dramatic impact on the unique properties and self-assembly in natural macromolecules, which has received increasing interest. Herein, we report a series of discrete amphiphilic co-oligomers with the same composition but different building blocks in a semirigid backbone. These sequence-defined oligomers possess two primary amine groups on the side chain of the azobenzene building block, and hence, they become amphipathic due to quaternization of the amine groups when protonated in acidic aqueous solution.
View Article and Find Full Text PDFBiomacromolecules
September 2022
Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
Carbohydrates are key building blocks for advanced functional materials owing to their biological functions and unique material properties. Here, we propose a star-shaped discrete block co-oligomer (BCO) platform to access carbohydrate nanostructures in bulk and thin-film states via the microphase separation of immiscible carbohydrate and hydrophobic blocks (maltooligosaccharides with 1-4 glucose units and solanesol, respectively). BCOs with various star-shaped architectures and saccharide volume fractions were synthesized using a modular approach.
View Article and Find Full Text PDFJ Am Chem Soc
January 2022
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Optically driven ordering transitions are rarely observed in macromolecular systems, often because of kinetic limitations. Here, we report a series of block co-oligomers (BCOs) that rapidly order and disorder at room temperature in response to optical illumination, and the absence thereof. The system is a triblock where rigid azobenzene (Azo) mesogens are attached to each end of a flexible siloxane chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!