[Mechanism of Ezhu-containing serum in inhibiting expression of Shh and Gli1 in hepatic stellate cells].

Zhongguo Zhong Yao Za Zhi

Department of Integration of Traditional Chinese Medicine and Western Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.

Published: March 2017

To explore the mechanism of Ezhu-containing serum in inhibiting the expression of sonic hedgehog(Shh) and glioma-associated oncogene homolog-1(Gli1) in hepatic stellate cells(HSCs) induced by leptin. Twenty sprague-dawley (SD) rats were randomly divided into 2 groups (n=10), and given Ezhu-decoction and physiological saline by gavage for 10 days to prepare drug-containing serums. The HSCs during the exponential growth phase were divided into 7 groups: blank control group, model group, hedgehog pathway inhibitor(cyclopamine) group, Ezhu group, Ezhu and cyclopamine group, hedgehog pathway agonost(pumorphamine) group, Ezhu and purmorphamine group. HSCs were cultured in vitro and induced with 100 μg•L ⁻¹ leptin(except for the blank control group), then treated separately with the corresponding drugs for 24 hours. After the cells were collected, HSCs proliferation was detected using MTT colorimetric assay; the expressions of Shh and Gli1 were determined by PT-PCR, Western blot and immunofluorescence, respectively. The expressions of Shh and Gli1 were significantly increased after the HSCs of rats were induced by leptin (compared with the blank control group, P<0.01). After being interfered with Hh pathway inhibitor (cyclopamine) and Ezhu-containing serum, the expressions of Shh and Gli1 were decreased significantly(compared with the model group, P<0.01). After Ezhu-containing serum was used to interfere the Hh pathway inhibitor group, the mRNA and protein expressions of Shh and Gli1 were decreased significantly(compared with the model group, P<0.01). After Ezhu-containing serum was used to interfere the purmorphamine group, the mRNA and protein expressions of Shh and Gli1 decreased significantly(compared with the purmorphamine group, P<0.01). Ezhu-containing serum plays an important role in inhibiting HSCs activation by taking part in hedgehog signaling pathway, so as to regulate the expression of Shh and Gli1 in leptin-induced HSCs and then inhibit liver fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20170121.015DOI Listing

Publication Analysis

Top Keywords

shh gli1
12
blank control
12
control group
12
group ezhu
12
group
9
ezhu-containing serum
8
serum inhibiting
8
inhibiting expression
8
hepatic stellate
8
induced leptin
8

Similar Publications

Type 3 deiodinase activation mediated by the Shh/Gli1 axis promotes sepsis-induced metabolic dysregulation in skeletal muscles.

Burns Trauma

January 2025

Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.

Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.

View Article and Find Full Text PDF

Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair.

Bone Res

January 2025

Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.

Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.

View Article and Find Full Text PDF

Shh Protects the Injured Spinal Cord in Mice by Promoting the Proliferation and Inhibiting the Apoptosis of Nerve Cells via the Gli1-TGF-β1/ERK Axis.

Cell Biochem Funct

January 2025

Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Spinal cord injury (SCI) is a common neurological trauma that cannot be completely cured with surgical techniques and medications. In this study, we established a mouse SCI model and used an adeno-associated virus (AAV) to achieve the high expression of sonic hedgehog (Shh) at the injury site to further investigate the therapeutic effect and mechanism of Shh on SCI. The results of the present study show that Shh may promote motor function recovery.

View Article and Find Full Text PDF

Introduction: Ischemic stroke greatly threatens human life and health. Neuro-restoration is considered to be the critical points in reestablishing neurological function and improving the quality of life of patients. Catalpol is the main active ingredient of the Chinese herbal medicine , which has the beneficial efficacy in traditional remedy, is closely related to the mitochondrial morphology and function.

View Article and Find Full Text PDF

Melatonin (MT), an endogenous hormone secreted by pineal gland, has the sedative, anti-inflammatory and antioxidant functions. However, there are few studies on whether MT affects the proliferation and differentiation of antler chondrocytes. The present study investigated the influences of MT on the proliferation and differentiation of antler chondrocytes, explored its regulation on runt-related transcription factor 2 (RUNX2), NOTCH1 and sonic hedgehog (SHH) signaling, and elucidated their interplays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!