Purpose: The radiation dose enhancement caused by introducing gold nanoparticles (GNP) into cells can increase the dose locally absorbed. A disconnect between experimentally determined survival and dose enhancements predicted by Monte Carlo simulations on macroscopic scales, suggests small-scale energy deposition patterns play an important role in GNP dose enhancement. Clustering of the GNPs could potentially alter small-scale energy deposition patterns. Here we use Monte Carlo simulations to quantify energy deposition patterns in the presence of clustered GNPs and address the question of whether clustering of the nanoparticles affects the energy deposition patterns and ultimately cellular response.

Methods: Using the PENELOPE Monte Carlo code, we examine the absorption of energy in the environment of a single irradiated GNP following its interaction with a set of primary monoenergetic photon beams. We introduce successive GNPs to form a cluster about the particle in which the primary photon interactions occur and report on the energy deposited locally (within a 500 nm radius) and nonlocally (beyond 500 nm) in the surrounding water-equivalent medium as a function of the number of additional GNPs and the packing geometry they assume.

Results: When additional GNPs cluster in tightly packed formations about a GNP in which an incident photon interacts, both the energy deposited locally and released nonlocally are reduced relative to the case where other GNPs are not present. The degree of the reduction depends on incident photon energy, the number of GNPs added to the cluster, and the packing geometry. With 90 additional GNPs in a hexagonal close packing (HCP) cluster about a directly irradiated test particle, the local energy deposition was reduced to 29% (of the value in the absence of neighbors) in the most extreme monoenergetic case. Energy released into the nonlocal volume was most affected by the cluster for low-incident photon energies (< 40 keV), where reductions to 26% of the value in the absence of a cluster were shown. The packing geometry mitigated these results. When the irradiated GNP was on the periphery of the HCP cluster, or when the cluster was confined to a plane, the observed effects were weaker and when an equal number of GNPs were uniformly distributed in the local volume, the changes were trivial (less than 2%).

Conclusions: The findings provide grounds for reconciling the observations of cell survival with Monte Carlo predictions of GNP dose enhancement. This work is significant because it demonstrates that GNP clustering needs to be understood and accounted to optimize local dose enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.12620DOI Listing

Publication Analysis

Top Keywords

energy deposition
20
dose enhancement
16
monte carlo
16
deposition patterns
16
additional gnps
12
packing geometry
12
energy
10
gnps
9
carlo simulations
8
small-scale energy
8

Similar Publications

Graphitic carbon nitride (g-C3N4) has gained significant attention as a promising nonmetallic semiconductor photocatalyst due to its photochemical stability, favorable electronic properties, and efficient light absorption. Nevertheless, its practical applications are hindered by limitations such as low specific surface area, rapid recombination of photogenerated charge carriers, poor electrical conductivity, and restricted photo-response ranges. This review explores recent advancements in the synthesis, modification and application of g-C3N4 and its nanocomposites with a focus on addressing these challenges.

View Article and Find Full Text PDF

Meteoritic impacts on planetary surfaces deliver a significant amount of energy that can produce prebiotic organic compounds such as cyanides, which may be a key step to the formation of biomolecules. To study the chemical processes of impact-induced organic synthesis, we simulated the physicochemical processes of hypervelocity impacts (HVI) in experiments with both high-speed C projectiles and laser ablation. In the first approach, a C beam was accelerated to collide with ammonium nitrate (NHNO) to reproduce the shock process and plume generation of meteoritic impacts on nitrogen-rich planetary surfaces.

View Article and Find Full Text PDF

Purpose: To compare remineralisation efficacy between silver diamine fluoride (SDF) combined with potassium iodide (KI) and sodium fluoride (NaF) varnish using hydroxyapatite (HAP) artificial white spot lesions (AWSLs) demineralisation model.

Materials And Methods: A total of 25 HAP disks was randomly divided into five groups (n = 5): baseline, AWSLs, deionized water (DW), SDF-KI or F-varnish. After AWSLs were developed, the specimen was treated with either deionized water, SDF-KI or F-varnish.

View Article and Find Full Text PDF

Efficient separation of photogenerated charge carriers is essential for maximizing the photocatalytic efficiency of semiconductor materials in oxygen evolution reactions (OER). This study presents a novel trimetallic photocatalyst, MIL-100(Fe)/TiO/CoO, synthesized through a facile microwave-assisted hydrothermal method followed by atomic layer deposition (ALD). The porous MIL-100(Fe) serves as a support for the sequential deposition of TiO and CoO layers ALD, which enhances electron-hole pair separation and minimizes their recombination.

View Article and Find Full Text PDF

The design of electrically conductive textiles appears to be a promising approach to combat the existing challenge of deaths caused by severe cold climates around the globe. However, reports on the scalable fabrication of tolerant conductive textiles maintaining a low electrical resistance with an ability for unperturbed and prolonged performance are scarce. Here, a breathable and wrappable water-repellent conductive textile (water-repellent CT) with electrothermal and photothermal conversion abilities at low external voltage and in weak solar light is introduced, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!