Here we report the preparation of hollow microspheres with a thin shell composed of mixed cobalt nitride (Co-N) and cobalt oxide (Co-O) nanofragments encapsulated in thin layers of nitrogen-doped carbon (N-C) nanostructure (Co-N/Co-O@N-C) arrays with enhanced bifunctional oxygen electrochemical performance. The hybrid structures are synthesized via heat treatment of N-doped hollow carbon microspheres with cobalt nitrate, and both the specific ratio of these precursors and the selected annealing temperature are found to be the key factors for the formation of the unique hybrid structure. The as-obtained product (Co-N/Co-O@N-C) presents a large specific surface area (493 m g), high-level heteroatom doping (Co-N, Co-O, and N-C), and hierarchical porous nanoarchitecture containing macroporous frameworks and mesoporous walls. Electronic interaction between the thin N-C layers and the encapsulated Co-N and Co-O nanofragments efficiently optimizes oxygen adsorption properties on the Co-N/Co-O@N-C and thereby triggers bifunctional oxygen electrochemical activity at the surface. The Co-N/Co-O@N-C nanohybrid exhibited a high onset potential of 0.93 V, and a limiting current density of 5.6 mA cm indicating 4-electron oxygen reduction reaction (ORR), afforded high catalytic activity for the oxygen evolution reaction (OER) and even exceeded the catalytic stability of the commercial precious electrocatalysts; furthermore, when integrated into the oxygen electrode of a regenerative fuel cell device, it exhibited high-performance oxygen electrodes for both the ORR and the OER.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr06646eDOI Listing

Publication Analysis

Top Keywords

bifunctional oxygen
12
oxygen
8
co-o nanofragments
8
oxygen electrochemical
8
co-n co-o
8
hierarchical cobalt-nitride
4
cobalt-nitride -oxide
4
-oxide co-doped
4
co-doped porous
4
porous carbon
4

Similar Publications

Recent Advancements in CoO-Based Composites for Enhanced Electrocatalytic Water Splitting.

Micromachines (Basel)

November 2024

Department of Fiber System Engineering, Yeungnam University, 280 Dehak-Ro, Gyeongsan 38541, Republic of Korea.

The pursuit of efficient and economical catalysts for water splitting, a critical step in hydrogen production, has gained momentum with the increasing demand for sustainable energy. Among the various electrocatalysts developed to date, cobalt oxide (CoO) has emerged as a promising candidate owing to its availability, stability, and catalytic activity. However, intrinsic limitations, including low catalytic activity and poor electrical conductivity, often hinder its effectiveness in electrocatalytic water splitting.

View Article and Find Full Text PDF

Phase regulation of Ni(OH) nanosheets induced by W doping as self-supporting electrodes for boosted water electrolysis.

J Colloid Interface Sci

January 2025

State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China. Electronic address:

Developing high-performance and low-cost electrodes for hydrogen and oxygen evolution reactions (HER and OER, respectively) represents a pivotal challenge in the field of water electrolysis. Herein, W doped NiFe LDH nanosheets (NiFe-W/NF) were immobilized on nickel foam (NF) through one-step corrosion engineering, which induced the coexistence of α-Ni(OH) and β-Ni(OH). The doping of large atomic radius W influenced the growth of crystal planes of Ni(OH), promoting the formation of α-Ni(OH), which results in large layer spaces and neatly arranged nanosheets structure.

View Article and Find Full Text PDF

Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.

View Article and Find Full Text PDF

The position and configuration of the C═C bond have a significant impact on the spatial conformation of unsaturated lipids, which subsequently affects their biological functions. Double bond isomerization of lipids is an important mechanism of bacterial stress response, but its in-depth mechanistic study still lacks effective analytical tools. Here, we developed a visible-light-activated dual-pathway reaction system that enables simultaneous [2 + 2] cycloaddition and catalytic - isomerization of the C═C bond of unsaturated lipids via directly excited anthraquinone radicals.

View Article and Find Full Text PDF

Oxygen vacancy-rich defective tungsten oxide (WO) modified by Prussian blue for efficient photocatalytic carbon dioxide conversion and tetracycline degradation.

J Colloid Interface Sci

December 2024

Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece. Electronic address:

The coupling of carbon dioxide (CO) with epoxides to produce cyclic carbonates is a desirable decarbonization approach, but its commercial applicability is still restricted by the costly catalysts required, as well as the need for high temperature and high pressure. Herein, oxygen vacancy-rich defective tungsten oxide (WO) rich in Lewis acid sites was modified by Prussian blue (PB), and the obtained composite reaches up to 94 % styrene carbonate yield (171 mmol gh) at ambient temperature and pressure, exhibiting outstanding advantages in the photocatalytic CO cycloaddition reaction compared with currently reported photocatalysts. It is found that the introduction of PB with photothermal properties significantly enhances the capability of WO to absorb and activate CO and epoxide, along with its light utilization ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!