Large-scale crystallization and neutron crystallographic analysis of HSP70 in complex with ADP.

Acta Crystallogr F Struct Biol Commun

Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugutani, Toyama 930-0914, Japan.

Published: October 2017

HSP70 belongs to the heat-shock protein family and binds to unfolded proteins, driven by ATP hydrolysis, in order to prevent aggregation. Previous X-ray crystallographic analyses of HSP70 have shown that HSP70 binds to ADP with internal water molecules. In order to elucidate the role of the water molecules, including their H/D atoms, a neutron diffraction study of the human HSP70 ATPase domain was initiated. Deuterated large crystals of the HSP-ADP complex (1.2-1.8 mm) were successfully grown by large-scale crystallization, and a neutron diffraction experiment at BIODIFF resulted in diffraction to a maximum resolution of 2.2 Å. After data reduction, the overall completeness, R and average I/σ(I) were 90.4%, 11.7% and 8.1, respectively, indicating that the data set was sufficient to visualize H and D atoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633922PMC
http://dx.doi.org/10.1107/S2053230X1701264XDOI Listing

Publication Analysis

Top Keywords

large-scale crystallization
8
crystallization neutron
8
water molecules
8
neutron diffraction
8
hsp70
5
neutron crystallographic
4
crystallographic analysis
4
analysis hsp70
4
hsp70 complex
4
complex adp
4

Similar Publications

Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.

View Article and Find Full Text PDF

A Wenzel Interfaces Design for Homogeneous Solute Distribution Obtains Efficient and Stable Perovskite Solar Cells.

Adv Mater

January 2025

College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.

View Article and Find Full Text PDF

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF

Highly Thermal-Conductive Cubic Boron Arsenide: Single-Crystal Growth, Properties, and Future Thin-Film Epitaxy.

J Phys Chem Lett

January 2025

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.

Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.

View Article and Find Full Text PDF

Transition-metal nitrides (TMNs) have garnered considerable attention for energy conversion applications owing to their exceptional electronic structures and high catalytic activities. However, the scarcity of active sites in TMNs impedes their large-scale application. This study describes the use of wetness impregnation and ionic-liquid methods to enhance the electrocatalytic efficiency of molybdenum nitride (MoN) atomic clusters finely dispersed on nitrogen-doped carbon (MoN@NC) substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!