Introduction: It is well known that cancer cells have an altered metabolism both to meet the energy needs and to provide initial molecules for the synthesis of macromolecules. To cope with the new metabolic state, different forms of certain enzymes are expressed in extreme amounts. These enzymes are seen as very attractive targets to deal with cancer. Pyruvate kinases isoenzyme M2 (PKM2) is a key enzyme that determines whether glucose is used for energy or synthesis of biosynthetic molecules. The dimeric form of PKM2 main form in several cancer cells serves the formation of synthetic precursors required for the cell growth and proliferation from glycolytic intermediates.

Areas Covered: This article reviews appropriate publications on PKM2 activators from the points of view of synthesis and biological activities between 2011-2017. Herein, based on the chemical structure, PKM2 activators are classified into sulfonamide, phenolic, carboxamide and pyridopyrimidinone derivatives.

Expert Opinion: PKM2 activation inhibits cell growth and proliferation by decreasing a number of biomolecules required for cell building. Therefore; PKM2 activators are considered as an ideal drug for or the treatment of many cancer pathogens. It is necessary to discover new, more active and selective compounds for PKM2 activation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13543776.2018.1391218DOI Listing

Publication Analysis

Top Keywords

pkm2 activators
12
cancer cells
8
required cell
8
cell growth
8
growth proliferation
8
pkm2 activation
8
pkm2
7
pyruvate kinase
4
activators
4
kinase activators
4

Similar Publications

PKM2-mediated collagen XVII expression is critical for wound repair.

JCI Insight

January 2025

Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Chronic wounds have emerged as a tough clinical challenge. An improved understanding of wound healing mechanisms is paramount. Collagen XVII (COL17), a pivotal constituent of hemidesmosomes, holds considerable promise for regulating epidermal cell adhesion to the basement membrane, as well as for epidermal cell motility and self-renewal of epidermal stem cells.

View Article and Find Full Text PDF

Recurrent IDH mutations catalyze NADPH-dependent production of oncometabolite R-2HG for tumorigenesis. IDH inhibition provides clinical response in a subset of acute myeloid leukemia (AML) cases; however, most patients develop resistance, highlighting the need for more effective IDH-targeting therapies. By comparing transcriptomic alterations in isogenic leukemia cells harboring CRISPR base-edited IDH mutations, we identify the activation of adhesion molecules including CD44, a transmembrane glycoprotein, as a shared feature of IDH-mutant leukemia, consistent with elevated CD44 expression in IDH-mutant AML patients.

View Article and Find Full Text PDF

Aim/introduction: Senescence is a key driver of age-related kidney dysfunction, including diabetic kidney disease. Oxidative stress activates cellular senescence, induces abnormal glycolysis, and is associated with pyruvate kinase muscle isoform 2 (PKM2) dysfunction; however, the mechanisms linking PK activation to cellular senescence have not been elucidated. We hypothesized that PKM2 activation by TEPP-46 could suppress oxidative stress-induced renal tubular cell injury and cellular senescence.

View Article and Find Full Text PDF

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

Coptisine improves LPS-induced anxiety-like behaviors by regulating the Warburg effect in microglia via PKM2.

Biomed Pharmacother

January 2025

Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China. Electronic address:

Neuroinflammation mediated by microglia is considered the primary cause and pathological process of anxiety. Abnormal glycolysis of microglia is observed during microglia activation. However, whether regulating the Warburg effect in microglia can effectively intervene anxiety and its potential mechanisms have not been elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!