In the current era of molecularly targeted therapies and precision medicine, choice of cancer treatment has been increasingly tailored according to the molecular or genomic characterization of the cancer the individual has. Previously, the clinical observation of inadequate control of brain metastases was widely attributed to a lack of central nervous system (CNS) penetration of the anticancer drugs. However, more recent data have suggested that there are genetic explanations for such observations. Genomic analyses of brain metastases and matching primary tumor and other extracranial metastases have revealed that brain metastases can harbor potentially actionable driver mutations that are unique to them. Identification of genomic alterations specific to brain metastases and targeted therapies against these mutations represent an important research area to potentially improve survival outcomes for patients who develop brain metastases. Novel approaches in genomic testing such as that using cell-free circulating tumor DNA (ctDNA) in the cerebrospinal fluid (CSF) facilitate advancing our understanding of the genomics of brain metastases, which is critical for precision medicine. CSF-derived ctDNA sequencing may be particularly useful in patients who are unfit for surgical resection or have multiple brain metastases, which can harbor mutations that are distinct from their primary tumors. Compared to the traditional chemotherapeutics, novel targeted agents appear to be more effective in controlling the CNS disease with better safety profiles. Several brain metastases-dedicated trials of various targeted therapies are currently underway to address the role of these agents in the treatment of CNS disease. This review focuses on recent advances in genomic profiling of brain metastases and current knowledge of targeted therapies in the management of brain metastases from cancers of the breast, lung, colorectum, kidneys, and ovaries as well as melanoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622141 | PMC |
http://dx.doi.org/10.3389/fonc.2017.00230 | DOI Listing |
Front Immunol
January 2025
Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France.
In recent decades, immunometabolism in cancers has emerged as an interesting target for treatment development. Indeed, the tumor microenvironment (TME) unique characteristics such as hypoxia and limitation of nutrients availability lead to a switch in metabolic pathways in both tumor and TME cells in order to support their adaptation and grow. Glioblastoma (GBM), the most frequent and aggressive primary brain tumor in adults, has been extensively studied in multiple aspects regarding its immune population, but research focused on immunometabolism remains limited.
View Article and Find Full Text PDFBrain metastasis has emerged as a significant challenge in the comprehensive management of patients with non-small cell lung cancer (NSCLC), particularly in those harboring driver gene mutations. Traditional treatments such as radiotherapy and surgery offer limited clinical benefits and are often accompanied by cognitive dysfunction and a decline in quality of life. In recent years, novel small molecule tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and other pathways have been developed, effectively penetrating the blood-brain barrier while enhancing intracranial drug concentrations and improving patient outcomes.
View Article and Find Full Text PDFHinyokika Kiyo
December 2024
The Department of Urology, Kurashiki Central Hospital.
The patient was a 21-year-old man with a shadow on a chest roentgenogram taken during a medical checkup. According to blood testing, thoracoabdominal computed tomography, head magnetic resonance imaging, and lung tumor biopsy, we diagnosed a primary retroperitoneal germ cell tumor with multiple lung and brain metastases. Induction chemotherapy (4 courses of Bleomycin, Etoposide and Cisplatin) was started immediately.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Neurosurgery, Helios Klinikum Erfurt, Erfurt, Germany.
Background: NF2-related schwannomatosis (NF2) is associated with various tumors of the central and peripheral nervous system. There is a wide range of disabilities these patients may suffer from and there is no validated clinical classification for disease severity. We propose a clinical classification consisting of three severity grades to assist in patient management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!