The geometry optimization of a water molecule with a novel type of energy function called FFLUX is presented, which bypasses the traditional bonded potentials. Instead, topologically-partitioned atomic energies are trained by the machine learning method kriging to predict their IQA atomic energies for a previously unseen molecular geometry. Proof-of-concept that FFLUX's architecture is suitable for geometry optimization is rigorously demonstrated. It is found that accurate kriging models can optimize 2000 distorted geometries to within 0.28 kJ mol of the corresponding ab initio energy, and 50% of those to within 0.05 kJ mol. Kriging models are robust enough to optimize the molecular geometry to sub-noise accuracy, when two thirds of the geometric inputs are outside the training range of that model. Finally, the individual components of the potential energy are analyzed, and chemical intuition is reflected in the independent behavior of the three energy terms [Formula: see text](intra-atomic), [Formula: see text] (electrostatic) and [Formula: see text] (exchange), in contrast to standard force fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634454 | PMC |
http://dx.doi.org/10.1038/s41598-017-12600-3 | DOI Listing |
F1000Res
January 2025
Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Background: Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs.
View Article and Find Full Text PDFOptical fibers are between the most common implantable devices for delivering light in the nervous system for optogenetics and infrared neural stimulation applications. Tapered optical fibers, in particular, can offer homogeneous light delivery to a large volume and spatially resolved illumination compared to standard flat-cleaved fibers while being minimally invasive. However, the use of tapers for neural applications has up to now been limited to silica optical fibers, whose large Young's modulus can cause detrimental foreign body response in chronic settings.
View Article and Find Full Text PDFConventional laser micromachining technologies rely on trial-and-error optimization to obtain precise surface geometry. In this study, we present a laser micromachining setup that enables the preparation of the desired surface geometry without the need for parameter exploration. The setup consists of a laser scanning system, a coaxial imaging system, a paraxial laser line projector, and a three-axis stage.
View Article and Find Full Text PDFThe ability to significantly enhance near-field coupling between light and matter at the nanoscale is crucial for advancing the fields of nanophotonics and nanopolariotonics. However, conventional probes face challenges in achieving optimal light-matter interaction. In this study, we propose a novel, to the best of our knowledge, simulation-based strategy that leverages tip engineering to dramatically amplify the scattering field through tailored double-layer geometries.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.
Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!