Modelling human diseases caused by large genomic rearrangements has become more accessible since the utilization of CRISPR/Cas9 in mammalian systems. In a previous study, we showed that genomic rearrangements of up to one million base pairs can be generated by direct injection of CRISPR/Cas9 reagents into mouse zygotes. Although these rearrangements are ascertained by junction PCR, we describe here a variety of anticipated structural changes often involving reintegration of the region demarcated by the gRNAs in the vicinity of the edited locus. We illustrate here some of this diversity detected by high-resolution fibre-FISH and conclude that extensive molecular analysis is required to fully understand the structure of engineered chromosomes generated by Cas9.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634419PMC
http://dx.doi.org/10.1038/s41598-017-12740-6DOI Listing

Publication Analysis

Top Keywords

genomic rearrangements
12
generated cas9
8
revealing hidden
4
hidden complexities
4
complexities genomic
4
rearrangements
4
rearrangements generated
4
cas9 modelling
4
modelling human
4
human diseases
4

Similar Publications

Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development.

View Article and Find Full Text PDF

In the present study, we aimed to investigate intratumoral karyotype diversity as well as the estrogen/progesterone effect on the cytogenetic profile of uterine leiomyomas (ULs). A total of 15 UL samples obtained from 15 patients were cultured in the media supplemented with estrogen and/or progesterone and without adding hormones. Conventional cytogenetic analysis of culture samples revealed clonal chromosomal abnormalities in 11 out of 15 ULs.

View Article and Find Full Text PDF

Proteomic patterns associated with ketamine response in major depressive disorders.

Cell Biol Toxicol

January 2025

Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China.

Background: Major depressive disorder (MDD) is characterized by persistent feelings of sadness and loss of interest. Ketamine has been widely used to treat MDD owing to its rapid effect in relieving depressive symptoms. Importantly, not all patients respond to ketamine treatment.

View Article and Find Full Text PDF

Chromothripsis, a hallmark of cancer, is characterized by extensive and localized DNA rearrangements involving one or a few chromosomes. However, its genome-wide frequency and characteristics in urothelial carcinoma (UC) remain largely unknown. Here, by analyzing single-regional and multi-regional whole-genome sequencing (WGS), we present the chromothripsis blueprint in 488 UC patients.

View Article and Find Full Text PDF

Insights into Heterocycle Biosynthesis in the Cytotoxic Polyketide Alkaloid Janustatin A from a Plant-Associated Bacterium.

Biochemistry

January 2025

Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.

Janustatin A is a potently cytotoxic polyketide alkaloid produced at trace amounts by the marine bacterial plant symbiont . Its biosynthetic terminus features an unusual pyridine-containing bicyclic system of unclear origin, in which polyketide and amino acid extension units appear reversed compared to the order of enzymatic modules in the polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) assembly line. To elucidate unknown steps in heterocycle formation, we first established robust genome engineering tools in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!