Hologram memory is expected to be the next-generation of optical data storage technology. Bismuth-substituted yttrium iron garnet is typically used for rewritable magnetic hologram media. The diffraction efficiency of magnetic holography depends on the Faraday rotation angle, but the experimental diffraction efficiency is not as high as that expected from calculations. This difference could be caused by incomplete magnetization reversal at the recorded region. In this study, we investigated the effects of magnetic assist (MA) recording through numerical simulation and experiment to improve the diffraction efficiency and the resulting reconstructed images. The improvement of diffraction efficiency was more effective in garnet films thinner than the width of a fringe, and a suitable value of the assist magnetic field was identified for the improvement. In addition, MA recording improved the intensity of reconstructed images and broadened the non-error recording conditions to the low energy region. This technique shows promise in improving the reconstructed quality of magnetic hologram data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634506 | PMC |
http://dx.doi.org/10.1038/s41598-017-12442-z | DOI Listing |
RSC Adv
January 2025
School of Material Science and Engineering, Nanjing Tech University P. R China.
Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Department of Chemistry, Ilam Branch, Islamic Azad University, Daneshjoo Blvd., Ilam 6931133145, Iran.
In the present study, metal-organic frameworks, MIL-101(Fe) and MIL-53(Al), were synthesized under solvothermal conditions and were characterized by Fourier transform infrared spectroscopy, X-ray energy diffraction spectroscopy and scanning electron microscopy. The synthesized metal-organic frameworks were utilized for the purpose of dispersive micro-solid phase extraction of sorafenib in both human plasma and wastewater, which was subsequently followed by high performance liquid chromatography with ultraviolet determination. Parameters affecting extraction efficacy including adsorbent amount, ionic strength, pH, type of elution solvent, adsorption and desorption time were optimized.
View Article and Find Full Text PDFPLoS One
January 2025
The National Centre of Vaccines and Bioprocessing, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.
Methotrexate (MTX) is classified as an antimetabolite. It's commonly used to treat lung cancer. MTX is an immunosuppressant following the above-mentioned mechanism of action due to its poor selectivity.
View Article and Find Full Text PDFSci Rep
January 2025
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.
This research successfully synthesized semiconductive magnesioferrite (MgFeO) nanomaterials using a green chemistry method that utilizes the natural extract of Moringa olefeira serving as both a reducing and oxidizing agent. The optical characteristics and crystalline structure of the MgFeO nanomaterials were analysed using photoluminescence, diffuse reflectance spectroscopy, and X-ray diffraction. Additionally, Fourier transform infrared spectroscopy provided valuable insights into the chemical bonding and composition.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
The pervasive presence of toluene in aquatic environments, primarily due to oil spills and industrial effluents, necessitates the development of effective and sustainable remediation strategies. This study introduces ZIF-8@DES-treated loofah sponge (ZIF-8@DLS), a novel adsorbent composite material, synthesized via an in situ process that integrates the high surface area of ZIF-8 with the natural loofah sponge. The composite was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), confirming the successful loading of ZIF-8 onto the loofah substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!