A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Personalized siRNA-Nanoparticle Systemic Therapy using Metastatic Lymph Node Specimens Obtained with EBUS-TBNA in Lung Cancer. | LitMetric

Inhibiting specific gene expression with siRNA provides a new therapeutic strategy to tackle many diseases at the molecular level. Recent strategies called high-density lipoprotein (HDL)-mimicking peptide-phospholipid nanoscaffold (HPPS) nanoparticles have been used to induce siRNAs-targeted delivery to -expressing cancer cells with high efficiency. Here, eight ideal therapeutic target genes were identified for advanced lung cancer throughout the screenings using endobronchial ultrasonography-guided transbronchial needle aspiration (EBUS-TBNA) and the establishment of a personalized siRNA-nanoparticle therapy. The relevance of these genes was evaluated by means of siRNA experiments in cancer cell growth. To establish a therapeutic model, was selected as a target gene. A total of 356 lung cancers were analyzed immunohistochemically for its clinicopathologic significance. The antitumor effect of HPPS-conjugated siRNA was evaluated using xenograft tumor models. Inhibition of gene expression for these targets effectively suppressed lung cancer cell growth. SCARB1 was highly expressed in a subset of tumors from the lung large-cell carcinoma (LCC) and small-cell lung cancer (SCLC) patients. High-level KIF11 expression was identified as an independent prognostic factor in LCC and squamous cell carcinoma (SqCC) patients. Finally, a conjugate of siRNA against and HPPS nanoparticles induced downregulation of KIF11 expression and mediated dramatic inhibition of tumor growth This approach showed delivering personalized cancer-specific siRNAs via the appropriate nanocarrier may be a novel therapeutic option for patients with advanced lung cancer. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-16-0341DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
personalized sirna-nanoparticle
8
gene expression
8
hpps nanoparticles
8
advanced lung
8
cancer cell
8
cell growth
8
kif11 expression
8
lung
7
cancer
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!