In chickens, B cells develop in the bursa of Fabricius, a unique organ for B cell development. Most B cells will die within the bursa, mirroring cell losses seen in mammalian bone marrow as central tolerance is enforced at the transition to mature cells. B cell responses are shaped by a complex interplay of signals. Signals in addition to BCR that impact central tolerance have recently been described. We have been interested in chB6, a novel alloantigen on B cells in the chicken. chB6 is found in close proximity to the BCR and can trigger apoptosis after cross-linking by antibody. chB6 has two Ig domains, placing it within the CD2/SLAM family of molecules, but its cytoplasmic domain is unique. We have used a site-specific mutagenesis approach to show that an SH3 binding site in chB6 is required for the induction of apoptosis, suggesting parallels to CD2 signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellimm.2017.09.009 | DOI Listing |
Plant Biotechnol J
January 2025
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.
Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, Chemistry, 800 Dongchuan RD. Minhang District, 200240, Shanghai, CHINA.
A synergistic photoredox/cobalt/chromium triple catalysis system for regioselective, enantioselective, and diastereoselective 1,4-hydrocarbonation of readily available 1,3-enyne precursors was explored, providing a modular synthetic platform for various trisubstituted axially chiral allenes bearing an extra central chirality. The protocol features a broad substrate scope, good functional group tolerance, excellent selectivity, and mild reaction conditions. Furthermore, a possible reaction mechanism is proposed based on numerous control experiments and density functional theory calculations.
View Article and Find Full Text PDFFoods
January 2025
Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
This study evaluates the stress tolerance and metabolic adaptability of twelve yeast strains, including eleven commercial strains from Wyeast Laboratories and one prototrophic laboratory strain, under industrially relevant conditions. Yeast strains were assessed for their fermentation performance and stress responses under glucose limitation, osmotic stress, acid stress, elevated ethanol concentrations, and temperature fluctuations. Results revealed significant variability in glucose consumption, ethanol production, and stress tolerance across strains.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China.
() genes play a crucial role in the response to abiotic stress and are important target genes for research on plant stress tolerance mechanisms. Bunge is a promising candidate tree species for investigating the tolerance mechanism of woody plants against abiotic stress. In our previous study, was identified as being associated with seed drought tolerance.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Long-term use of the global non-selective herbicide glyphosate for weed control has caused resistance in weeds. Overproducing of the target of glyphosate 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is one of the resistance mechanisms in weeds. However, few studies have measured the effects on tolerance levels and metabolite content in model plant species overexpressing from weeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!