De novo transcriptome sequencing of Camellia sasanqua and the analysis of major candidate genes related to floral traits.

Plant Physiol Biochem

Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Published: November 2017

Camellia sasanqua is one of the most famous horticultural plants in Camellia (Theaceae) due to its aesthetic appeal as landscape plant. Knowledge regarding the genetic basis of flowering time, floral aroma and color in C. sasanqua is limited, but is essential to breed new varieties with desired floral traits. Here, we described the de novo transcriptome of young leaves, flower buds and flowers of C. sasanqua. A total of 60,127 unigenes were functionally annotated based on the sequence similarity. After analysis, we found that two floral integrator genes, SOC1 and AP1, in flowering time pathway showed evidence of gene family expansion. Compared with 1-deoxy-D-xylulose-5-phosphate pathway, some genes in the mevalonate pathway were most highly expressed, suggesting that this might represent the major pathway for terpenoid biosynthesis related to floral aroma in C. sasanqua. In flavonoid biosynthesis pathway, PAL, CHI, DFR and ANS showing significantly higher expression levels in flowers and flower buds might have important role in regulation of floral color. The top five most transcription factors (TFs) families in C. sasanqua transcriptome were MYB, MIKC, C3H, FAR1 and HD-ZIP, many of which have a direct relationship with floral traits. In addition, we also identified 33,540 simple sequence repeats (SSRs) in the C. sasanqua transcriptome. Collectively, the C. sasanqua transcriptome dataset generated from this study along with the SSR markers provide a new resource for the identification of novel regulatory transcripts and will accelerate the genetic improvement of C. sasanqua breeding programs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2017.08.028DOI Listing

Publication Analysis

Top Keywords

floral traits
12
c sasanqua transcriptome
12
novo transcriptome
8
camellia sasanqua
8
flowering time
8
floral aroma
8
flower buds
8
floral
7
c sasanqua
7
pathway
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!