Moths and butterflies (Lepidoptera) represent the most diverse group of animals with heterogametic females. Although the vast majority of species has a WZ/ZZ (female/male) sex chromosome system, it is generally accepted that the ancestral system was Z/ZZ and the W chromosome has evolved in a common ancestor of Tischeriidae and Ditrysia. However, the lack of data on sex chromosomes in lower Lepidoptera has prevented a formal test of this hypothesis. Here, we performed a detailed analysis of sex chromosomes in Tischeria ekebladella (Tischeriidae) and 3 species representing lower Ditrysia, Cameraria ohridella (Gracillariidae), Plutella xylostella (Plutellidae), and Tineola bisselliella (Tineidae). Using comparative genomic hybridization we show that the first 3 species have well-differentiated W chromosomes, which vary considerably in their molecular composition, whereas T. bisselliella has no W chromosome. Furthermore, our results suggest the presence of neo-sex chromosomes in C. ohridella. For Z chromosomes, we selected 5 genes evenly distributed along the Z chromosome in ditrysian model species and tested their Z-linkage using qPCR. The tested genes (Henna, laminin A, Paramyosin, Tyrosine hydroxylase, and 6-Phosphogluconate dehydrogenase) proved to be Z-linked in all species examined. The conserved synteny of the Z chromosome across Tischeriidae and Ditrysia, along with the W chromosome absence in the lower ditrysian families Psychidae and Tineidae, suggests a possible independent origin of the W chromosomes in these 2 lineages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jhered/esx063 | DOI Listing |
Genes (Basel)
December 2019
Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005 České Budějovice, Czech Republic.
Moths and butterflies (Lepidoptera) are the largest group with heterogametic females. Although the ancestral sex chromosome system is probably Z0/ZZ, most lepidopteran species have the W chromosome. When and how the W chromosome arose remains elusive.
View Article and Find Full Text PDFJ Hered
October 2017
Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic.
Moths and butterflies (Lepidoptera) represent the most diverse group of animals with heterogametic females. Although the vast majority of species has a WZ/ZZ (female/male) sex chromosome system, it is generally accepted that the ancestral system was Z/ZZ and the W chromosome has evolved in a common ancestor of Tischeriidae and Ditrysia. However, the lack of data on sex chromosomes in lower Lepidoptera has prevented a formal test of this hypothesis.
View Article and Find Full Text PDFMol Phylogenet Evol
October 2014
Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. Electronic address:
The backbone phylogeny of Lepidoptera remains unresolved, despite strenuous recent morphological and molecular efforts. Molecular studies have focused on nuclear protein coding genes, sometimes adding a single mitochondrial gene. Recent advances in sequencing technology have, however, made acquisition of entire mitochondrial genomes both practical and economically viable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!