AI Article Synopsis

Article Abstract

The Toll family of receptors sense microbial products and activate a defense response. The molecular machinery required for the TLR response is not yet fully understood. In the present study, we used a clustered, regularly interspaced, short palindromic repeats (CRISPR)/CAS9 screening system to study TLR responses. We employed a cell line expressing TLR with an NF-κB-driven GFP reporter. The cell line was transduced with a guide RNA (gRNA) library and stimulated with TLR ligands. The cells impaired in GFP induction were sorted, and gRNAs were sequenced. Identified genes were ranked according to the count of sequence reads and the number of gRNA target sites. The screening system worked correctly, as molecules that were already known to be required for the TLR response were identified by the screening. Furthermore, this system revealed that the oligosaccharide transferase complex (OSTC) mediating co-translational glycosylation was required for TLR5, 7 and 9 responses. Protein expression of TLR5, but not an irrelevant molecule (CD44), was abolished by the lack of OSTC, suggesting the essential role of glycosylation in TLR5 protein stability. These results demonstrate that the screening system established here is able to reveal molecular mechanisms underlying the TLR response.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxx044DOI Listing

Publication Analysis

Top Keywords

screening system
16
tlr response
12
tlr responses
8
crispr/cas9 screening
8
required tlr
8
tlr
7
screening
5
requirement glycosylation
4
glycosylation machinery
4
machinery tlr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!