The role of Arthrobacter viscosus in the removal of Pb(II) from aqueous solutions.

Water Sci Technol

Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, 'Gheorghe Asachi' Technical University of Iasi, 73 Prof.dr.docent D. Mangeron Street, 700050 Iasi, Romania E-mail: Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania.

Published: October 2017

The aim of this paper was to establish the optimum parameters for the biosorption of Pb(II) by dead and living Arthrobacter viscosus biomass from aqueous solution. It was found that at an initial pH of 4 and 26 °C, the dead biomass was able to remove 97% of 100 mg/L Pb(II), while the living biomass removed 96% of 100 mg/L Pb(II) at an initial pH of 6 and 28 ± 2 °C. The results were modeled using various kinetic and isotherm models so as to find out the mechanism of Pb(II) removal by A. viscosus. The modeling results indicated that Pb(II) biosorption by A. viscosus was based on a chemical reaction and that sorption occurred at the functional groups on the surface of the biomass. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX) analyses confirmed these findings. The suitability of living biomass as biosorbent in the form of a biofilm immobilized on star-shaped polyethylene supports was also demonstrated. The results suggest that the use of dead and living A. viscosus for the removal of Pb(II) from aqueous solutions is an effective alternative, considering that up to now it has only been used in the form of biofilms supported on different zeolites.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2017.360DOI Listing

Publication Analysis

Top Keywords

arthrobacter viscosus
8
viscosus removal
8
removal pbii
8
pbii aqueous
8
aqueous solutions
8
dead living
8
initial °c
8
100 mg/l
8
mg/l pbii
8
living biomass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!