Growing evidence sheds light on the use of flavonoids as the promising alternatives for the treatment of chronic conditions, including cancer and neurodegenerative disorders. Accordingly, in the present study, we aimed at evaluating the effects of oral intake of two structurally different flavonoids 5-hydroxy-6,7,4'-trimethoxyflavone (flavone 1) and 5,7,4'-trihydroxyflavone (flavone 2) on recognition memory, hippocampal protein level of immediate early gene cFos and mitochondrial dynamic markers in Amyloid β (Aβ)-injected rats. Recognition aspect of memory and level of proteins were measured using novel object recognition test and Western blot, respectively. Our data indicated that even though flavone 1 was more effective than flavone 2 to prevent memory impairment, feeding with both flavones alleviated memory in Aβ-injected rats. Furthermore, in flavones-administered rats, mitochondrial dynamic balancing returned to the control level by the decline in Dynamin-related protein-1 protein level, a known marker for mitochondrial fission, and elevation in protein level of mitochondrial fusion factors Mitofusins 1 and 2. In parallel with behavior results, flavone 1 was more effectual on mitochondrial dynamic moderating. The more neuroprotective effects of flavone 1 could be attributed to its methylated structure leading to crossing of the blood-brain barrier with ease and metabolic stability and bioactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1028415X.2017.1384173DOI Listing

Publication Analysis

Top Keywords

mitochondrial dynamic
16
aβ-injected rats
12
protein level
12
recognition memory
8
flavone
7
mitochondrial
6
memory
5
level
5
prevention recognition
4
memory loss
4

Similar Publications

Curcumin liposomes alleviate senescence of bone marrow mesenchymal stem cells by activating mitophagy.

Sci Rep

December 2024

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

The senescence of mesenchymal stem cells (MSCs) is closely related to aging and degenerative diseases. Curcumin exhibits antioxidant and anti-inflammatory effects and has been extensively used in anti-cancer and anti-aging applications. Studies have shown that curcumin can promote osteogenic differentiation, autophagy and proliferation of MSCs.

View Article and Find Full Text PDF

Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells, supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth in AML cell lines and primary CD34 + CD38 - blasts (LSC-enriched) in vitro while sparing normal hematopoietic stem cells (HSCs).

View Article and Find Full Text PDF

Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.

View Article and Find Full Text PDF

New insights into the relationship of mitochondrial metabolism and atherosclerosis.

Cell Signal

December 2024

Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China. Electronic address:

Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.

View Article and Find Full Text PDF

Injectable bioresponsive bone adhesive hydrogels inhibit NLRP3 inflammasome on demand to accelerate diabetic fracture healing.

Biomaterials

December 2024

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:

Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!