Metabolic changes accompany tumor progression and metastatic dissemination of cancer cells. Yet, until recently, metabolism has received little attention in the study of cancer metastasis. Cancer cells undergo significant metabolic rewiring as they acquire metastatic traits and adapt to survive in multiple environments with varying nutrient availability, oxygen concentrations, and extracellular signals. Therefore, to effectively treat metastatic cancer, it is important to understand the metabolic strategies adopted by cancer cells during the metastatic process. Here, we focus on the metabolic pathways known to play a role in cancer metastasis, including glycolysis, the pentose phosphate pathway, tricarboxylic acid cycle, oxidative phosphorylation, amino acid metabolism, and fatty acid metabolism. Recent studies have uncovered roles for these pathways in cellular events that promote metastasis, including reactive oxygen species-mediated signaling, epigenetic regulation, and interaction with the extracellular matrix. We also discuss the metabolic interplay between immune cells and cancer cells supporting metastasis. Finally, we highlight the current limitations of our knowledge on this topic, and present future directions for the field. WIREs Syst Biol Med 2018, 10:e1406. doi: 10.1002/wsbm.1406 This article is categorized under: Biological Mechanisms > Metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wsbm.1406 | DOI Listing |
Comb Chem High Throughput Screen
January 2025
Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Laboratory Animal Center, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.
Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.
Anticancer Agents Med Chem
January 2025
Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkiye.
Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Mahesana, Gujarat, 384012, India.
Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!