The stability of β-carotene microcapsules using Maillard reaction products (MRPs) derived from whey protein isolate (WPI) and galactose as coating materials, was studied under the varying environmental conditions of temperature, pH, air, incandescent light, and ultraviolet (UV) light. Scanning electron microscopy showed that microcapsules prepared by WPI-galactose MRPs displayed a smooth and less concave-convex surface and that the particle size (D) of the microcapsules made with WPI-galactose MRPs was smaller than those made with WPI-galactose mixture. The storage stability of β-carotene microencapsulated in WPI-galactose MRPs was remarkably better than that of β-carotene microencapsulated in the WPI-galactose mixture and that of β-carotene crystal, in respect of temperature, pH, air, incandescent light, and UV light measurements. When the storage temperature was increased from 5 to 105 °C, the retention rate of β-carotene microcapsules significantly decreased (P<0.05). When pH values were increased from 1 to 12, the β-carotene retention rate of the microcapsules significantly increased and afterward decreased. Compared with the retention rate of β-carotene microencapsulated in a WPI-galactose mixture, the retention rate of β-carotene microencapsulated in WPI-galactose MRPs was at a maximum between pH 8 and 9. Under the actions of air, incandescent light, and UV light, the retention rates of β-carotene microcapsules in WPI-galactose MRPs and WPI-galactose mixture, as well as in β-carotene crystal, decreased significantly as the storage time increased (P<0.05). Therefore, the use of WPI-galactose MRPs as coating materials can aid in improving the storage stability of β-carotene microcapsules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633771PMC
http://dx.doi.org/10.1631/jzus.B1700082DOI Listing

Publication Analysis

Top Keywords

stability β-carotene
12
β-carotene microcapsules
12
wpi-galactose mrps
12
microcapsules maillard
8
maillard reaction
8
reaction products
8
derived whey
8
whey protein
8
protein isolate
8
galactose coating
8

Similar Publications

Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.

View Article and Find Full Text PDF

Background: Crossover interactions stemming from phenotypic plasticity complicate selection decisions when evaluating hybrid maize with superior grain yield and consistent performance. Consequently, a two-year, region-wide investigation of 45 hybrids maize across Nepal was performed with the aim of disclosing both site and wide adapted hybrids. Utilizing an innovative "ProbBreed" package, based on Bayesian probability analysis of randomized complete block designs with three replicated trials at each station, this study substantively streamlines hybrids maize selection.

View Article and Find Full Text PDF

The histone demethylase KDM5C enhances the sensitivity of acute myeloid leukemia cells to lenalidomide by stabilizing cereblon.

Cell Mol Biol Lett

January 2025

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.

Background: The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len.

View Article and Find Full Text PDF

Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!