Indian hedgehog protein (Ihh) is evolutionarily conserved and serves important roles in controlling the differentiation of progenitor cells into osteoblasts. Ihh null mutant mice exhibit a failure of osteoblast development in endochondral bone. Although studies have demonstrated that Ihh signaling is a potent local factor that regulates osteoblast differentiation, the specific transcription factors that determine osteoblast differentiation remain unclear. Further studies are required to determine the precise mechanism through which Ihh regulates osteoblast differentiation. In the present study, Ihh was knocked down in osteoblast MC3T3‑E1 cells using short hairpin RNA, to investigate the function of Ihh in osteoblast proliferation and differentiation and to examine the potential mechanism through which Ihh induces osteoblast apoptosis and cell cycle arrest. It was observed that the knockdown of Ihh induced a marked inhibition of cell growth and increased the apoptosis rate compared with the negative control osteoblasts. Downregulation of Ihh resulted in a cell cycle arrest at the G1 to S phase boundary in osteoblasts. In addition, the knockdown of Ihh decreased the alkaline phosphatase activity and mineral deposition of osteoblasts. The inhibitory roles of Ihh downregulation in osteoblast growth and differentiation may be associated with the transforming growth factor‑β/mothers against decapentaplegic homolog and tumor necrosis factor receptor superfamily member 11B/tumor necrosis factor ligand superfamily member 11 signaling pathways. Manipulating either Ihh expression or its signaling components may be of benefit for the treatment of skeletal diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779880 | PMC |
http://dx.doi.org/10.3892/mmr.2017.7669 | DOI Listing |
Mol Metab
December 2024
University of Lille, Lille University hospital, 59045, Lille, France; INSERM U1283, CNRS UMR 8199, Institut Pasteur de Lille, 59045, Lille, France; Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, United Kingdom; The Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, H3A 0G1, Canada. Electronic address:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterised by lipid accumulation in the liver and is often associated with obesity and type 2 diabetes. The gut microbiome recently emerged as a significant player of liver metabolism and health through the production of bioactive compounds that are beneficial for its host - "postbiotics". Circulating hippurate, a host-microbial co-metabolite produced by conjugating microbial benzoate with glycine in the host-liver, is associated with human gut microbial gene richness and with metabolic health.
View Article and Find Full Text PDFEndocr Connect
December 2024
M Ruchala, Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland.
Introduction And Objectives: Isolated hypogonadotropic hypogonadism (IHH) may be associated with pituitary gland and olfactory system disorders. We aimed to correlate findings of Magnetic Resonance Imaging (MRI) of the pituitary gland and olfactory system in IHH patients with the patients' olfactory phenotype.
Patients And Methods: The present research was a single-center retrospective case-control study.
J Bone Miner Res
December 2024
Paris Cité University, Reference center for skeletal dysplasia, INSERM UMR 1163, Imagine Institute, Necker Enfants Malades Hospital (AP-HP), Paris, France.
Chondrodysplasias with multiple dislocations are rare skeletal disorders characterized by hyperlaxity, joint dislocations, and growth retardation. Chondrodysplasias with multiple dislocations have been linked to pathogenic variants in genes encoding proteins involved in the proteoglycan biosynthesis. In this study, by exome sequencing analysis, we identified a homozygous nonsense variant (NM_001297654.
View Article and Find Full Text PDFFEBS J
December 2024
Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China.
Cleft palate is one of the most common birth defects in humans, and palate morphogenesis depends on epithelial-mesenchymal interaction. In this study, we report that ablation of Isl1 in the epithelium leads to complete cleft palate. A significant reduction in mesenchymal cell proliferation was detected in the Isl1 mutant palates, but there was no significant difference in apoptosis between wild-type and mutant embryos.
View Article and Find Full Text PDFExp Cell Res
December 2024
Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan, China. Electronic address:
Semaphorin 3C (SEMA3C) regulates the progression of several tumors. However, the role of SEMA3C in thyroid cancer remains unknow. In the present study, SEMA3C was overexpressed or knocked down in thyroid cancer cell lines BCPAP and IHH-4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!