Architecture of crossed-lamellar bivalve shells: the southern giant clam (, Röding, 1798).

R Soc Open Sci

Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia.

Published: September 2017

shells show a crossed lamellar microstructure consisting of three hierarchical lamellar structural orders. The mineral part is intimately intergrown with 0.9 wt% organics, namely polysaccharides, glycosylated and unglycosylated proteins and lipids, identified by Fourier transform infrared spectrometry. Transmission electron microscopy shows nanometre-sized grains with irregular grain boundaries and abundant voids. Twinning is observed across all spatial scales and results in a spread of the crystal orientation angles. Electron backscatter diffraction analysis shows a strong fibre texture with the [001] axes of aragonite aligned radially to the shell surface. The aragonitic [100] and [010] axes are oriented randomly around [001]. The random orientation of anisotropic crystallographic directions in this plane reduces anisotropy of the Young's modulus and adds to the optimization of mechanical properties of bivalve shells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627105PMC
http://dx.doi.org/10.1098/rsos.170622DOI Listing

Publication Analysis

Top Keywords

bivalve shells
8
architecture crossed-lamellar
4
crossed-lamellar bivalve
4
shells southern
4
southern giant
4
giant clam
4
clam röding
4
röding 1798
4
1798 shells
4
shells crossed
4

Similar Publications

Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.

View Article and Find Full Text PDF

Background: Amidst the escalating loss of global biodiversity, freshwater mussels (family Unionidae) have become one of the most imperiled animal groups. Acquiring more biological and phylogenetic information on understudied taxa constitutes a pivotal aspect of conservation biology. Consequently, a comprehensive examination was conducted on Koreosolenaia, Parvasolenaia, and Sinosolenaia from China encompassing morphology, anatomy, distribution, and molecular systematics to provide theoretical support for future species endangerment assessments and biodiversity conservation.

View Article and Find Full Text PDF

Multiplex panels of SNP markers based on single-base primer extension in the west Pacific pen shell Atrina lischkeana (Clessin, 1891).

Mol Biol Rep

December 2024

Production Engineering Division, Momoshima Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1760 Momoshima, Onomichi, Hiroshima, 722-0061, Japan.

Background: As part of stock enhancement programs for marine fishery species, the stocking of hatchery-produced seedlings into sea areas has been implemented worldwide. DNA markers are vital for responsible stock enhancement practices that aim to conserve the genetic diversity of recipient wild populations. We report novel single-nucleotide polymorphism (SNP) markers and multiplex SNP panels developed for the west Pacific pen shell Atrina lischkeana (Clessin, 1891), a large bivalve that is expected to be a subject of stock enhancement activity as the natural resource has dwindled, especially in Japan.

View Article and Find Full Text PDF

Rare Earth Elements and Yttrium (REY) are widely used as proxies for environmental conditions and biogeochemical processes, but have also become (micro)contaminants of surface waters worldwide. Soft tissues and shells of mussels are increasingly used in environmental science and geology as bioarchives for REY, but REY fractionation by and in these organisms is still not well understood. We report on the distribution of REY in different compartments of marine M.

View Article and Find Full Text PDF

Bivalve transmissible neoplasia (BTN) is one of three known types of naturally transmissible cancer-cancers in which the whole cancer cells move from individual to individual, spreading through natural populations. BTN is a lethal leukemia-like cancer that has been observed throughout soft-shell clam () populations on the east coast of North America, with two distinct sublineages circulating at low enzootic levels in New England, USA, and Prince Edward Island, Canada. Major cancer outbreaks likely due to BTN (MarBTN) were reported in 1980s and the 2000s and the disease has been observed since the 1970s, but it has not been observed in populations of this clam species on the US west coast.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!