A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bayesian sparse reduced rank multivariate regression. | LitMetric

Bayesian sparse reduced rank multivariate regression.

J Multivar Anal

Department of Statistics, University of Connecticut, Storrs, CT 06269, United States.

Published: May 2017

Many modern statistical problems can be cast in the framework of multivariate regression, where the main task is to make statistical inference for a possibly sparse and low-rank coefficient matrix. The low-rank structure in the coefficient matrix is of intrinsic multivariate nature, which, when combined with sparsity, can further lift dimension reduction, conduct variable selection, and facilitate model interpretation. Using a Bayesian approach, we develop a unified sparse and low-rank multivariate regression method to both estimate the coefficient matrix and obtain its credible region for making inference. The newly developed sparse and low-rank prior for the coefficient matrix enables rank reduction, predictor selection and response selection simultaneously. We utilize the marginal likelihood to determine the regularization hyperparameter, so our method maximizes its posterior probability given the data. For theoretical aspect, the posterior consistency is established to discuss an asymptotic behavior of the proposed method. The efficacy of the proposed approach is demonstrated via simulation studies and a real application on yeast cell cycle data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628626PMC
http://dx.doi.org/10.1016/j.jmva.2017.02.007DOI Listing

Publication Analysis

Top Keywords

coefficient matrix
16
multivariate regression
12
sparse low-rank
12
bayesian sparse
4
sparse reduced
4
reduced rank
4
multivariate
4
rank multivariate
4
regression modern
4
modern statistical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!