To explore the control of the peripheral circulation of a nonworking upper limb during leg cycling exercise, blood flow (BF) dynamics in the brachial artery (BA) were determined using a sinusoidal work rate (WR) exercise. Ten healthy subjects performed upright leg cycling exercise at a constant WR for 30 min, followed by 16 min of sinusoidal WR consisting of 4-min periods of WR fluctuating between a minimum output of 20 W and a maximum output corresponding to ventilatory threshold (VT). Throughout the protocol, pulmonary gas exchange, heart rate (HR), mean arterial blood pressure (MAP), blood velocity (BV), and cross-sectional area of the BA, forearm skin BF (SBF), and sweating rate (SR) were measured. Each variable was fitted to a sinusoidal model with phase shift () and amplitude (A). Nearly all variables closely fit a sinusoidal model. Variables relating to oxygen transport, such as O and HR, followed the sinusoidal WR pattern with certain delays (: O; 51.4 ± 4.0°, HR; 41.8 ± 5.4°, mean ± SD). Conversely, BF response in the BA was approximately in antiphase (175.1 ± 28.9°) with a relatively large A, whereas the phase of forearm SBF was dissimilar (65.8 ± 35.9°). Thus, the change of BF through a conduit artery to the nonworking upper limb appears to be the reverse when WR fluctuates during sinusoidal leg exercise, and it appears unlikely that this could be ascribed exclusively to altering the downstream circulation to forearm skin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641938PMC
http://dx.doi.org/10.14814/phy2.13456DOI Listing

Publication Analysis

Top Keywords

leg cycling
12
cycling exercise
12
brachial artery
8
blood flow
8
flow dynamics
8
sinusoidal leg
8
nonworking upper
8
upper limb
8
forearm skin
8
sinusoidal model
8

Similar Publications

Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.

View Article and Find Full Text PDF

Gait, balance, and physical performance as markers of early Alzheimer's disease and related dementia risk.

J Alzheimers Dis

January 2025

Comprehensive Center for Brain Health, Department of Neurology, Miller School of Medicine, University of Miami, Boca Raton, FL, USA.

Background: Declining physical functionality is an indicator of cognitive impairment, distinguishing normal cognition (NC) from dementia. Whether this extends to pre-dementia stages is unclear.

Objective: Assess physical performance patterns, evaluate relationships with imaging biomarkers, and identify specific measures distinguishing NC, subjective cognitive decline (SCD) and mild cognitive impairment (MCI).

View Article and Find Full Text PDF

Analysis of the Feasibility of the OrthoNail Hybrid Intramedullary Implant in the Human Body with Respect to Material Durability.

J Funct Biomater

January 2025

Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland.

This study focuses on the development and evaluation of the OrthoNail hybrid intramedullary implant for lower limb lengthening in patients requiring significant skeletal reconstruction. The implant addresses the challenges in load-bearing during rehabilitation, providing a robust solution that is capable of supporting physiological loads. Mechanical tests, including axial compression, tension, torsion, and 3,4-point bending, determined the implant's load capacity and fatigue resistance, while finite element analysis assessed stress distributions in bone tissue and around screw holes during single-leg stance, with boundary conditions derived from Orthoload database data.

View Article and Find Full Text PDF

Increasing thigh extension with haptic feedback affects leg coordination in young and older adult walkers.

J Biomech

January 2025

Biorobotics and Biomechanics Lab, Department of Mechanical Engineering, University of Maine, Orono, 04469, ME, United States of America. Electronic address:

Interlimb coordination can be used as a metric to study the response of the neuromuscular system to mechanical perturbations and behavioral information. Behavioral information providing haptic feedback on thigh angle has been shown to increase stride length and consequently walking speed, but the effect of such feedback on limb coordination has not been determined. The current work investigates the effects of this feedback on lower-limb coordination and examines if such effects are dependent on the age of the walker.

View Article and Find Full Text PDF

Background/objectives: The underlying mechanisms of taekwondo-specific jumping ability among different competition levels are still unknown. This study aimed to compare vertical and horizontal stretch-shortening cycle (SSC) performance between athletes of different competitive levels and examine the relationships of force and power production abilities between those two directions in Taiwanese collegiate-level male taekwondo athletes.

Methods: Seventeen male collegiate taekwondo athletes were divided into two groups: medalists (MG, n = 8) and non-medalists (NMG, n = 9); both groups performed countermovement jumps (CMJ) on a force platform and single-leg lateral hops (SLLHs) via an optoelectronic measurement system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!