Background: Wilson's disease is a genetic disorder in which copper accumulates in the liver, brain, and other tissues. Therapies are limited by efficacy, safety concerns, and multiple daily dosing. Bis-choline tetrathiomolybdate (WTX101) is an oral first-in-class copper-protein-binding molecule that targets hepatic intracellular copper and reduces plasma non-ceruloplasmin-bound copper (NCC) by forming tripartite complexes with albumin and increasing biliary copper excretion. We aimed to assess the efficacy and safety of WTX101 in the initial or early treatment of patients with Wilson's disease.

Methods: We did this open-label, phase 2 study at 11 hospitals in the USA and Europe. We enrolled patients (≥18 years) with Wilson's disease who were untreated or had received no more than 24 months of treatment with chelators or zinc, had a Leipzig score of 4 or more, and had NCC concentrations above the lower limit of the normal reference range (≥0·8 μmol/L). Eligible patients received WTX101 monotherapy at a starting dose of 15-60 mg/day on the basis of baseline NCC concentrations for the first 4-8 weeks, with response-guided individualised dosing for the remaining weeks up to week 24. Investigators, other hospital personnel, and patients were aware of the identity of the treatment. The primary endpoint was change in baseline NCC concentrations corrected for copper in tetrathiomolybdate-copper-albumin complexes (NCC) at 24 weeks, with treatment success defined as achievement or maintenance of normalised NCC (≤2·3 μmol/L [upper limit of normal]) or achievement of at least a 25% reduction in NCC from baseline at 24 weeks. This study is registered with ClinicalTrials.gov, number NCT02273596.

Findings: Between Nov 24, 2014, and April 27, 2016, 28 patients were enrolled and received WTX101; 22 (79%) patients completed the study up to week 24. At 24 weeks, 20 (71%, 95% CI 51·3-86·8; p<0·0001) of 28 patients met the criteria for treatment success: 16 (57%) treated with WTX101 either achieved or maintained normalised NCC concentrations and 4 (14%) had at least a 25% reduction from baseline NCC. Mean NCC was reduced by 72% from baseline to week 24 (least squares mean difference -2·4 μmol/L [SE 0·4], 95% CI -3·2 to -1·6; p<0·0001). No cases of paradoxical drug-related neurological worsening were recorded. Liver function was stable in all patients, although reversible increased concentrations of asymptomatic alanine or aspartate aminotransferase, or γ-glutamyltransferase, without increased bilirubin, occurred in 11 (39%) of 28 patients who received at least 30 mg/day. 11 serious adverse events were reported in seven (25%) patients and included psychiatric disorders (six events in four patients), gait disturbance (one event), elevated liver aminotransferases (two events in two patients, one with agranulocytosis), and decline in neurological functioning (one event, likely due to natural disease progression although causality could not be ruled out). The seven serious adverse events categorised as psychiatric disorders and as gait disturbance were assessed as unlikely to be related to the study drug, whereas the remaining four events were possibly or probably related.

Interpretation: Our findings indicate that WTX101 might be a promising new therapeutic approach for Wilson's disease, with a unique mode of action. In view of its once-daily dose and favourable safety profile, WTX101 could improve the treatment of patients with this debilitating condition.

Funding: Wilson Therapeutics AB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2468-1253(17)30293-5DOI Listing

Publication Analysis

Top Keywords

wilson's disease
12
ncc concentrations
12
bis-choline tetrathiomolybdate
8
patients wilson's
8
phase study
8
efficacy safety
8
received wtx101
8
baseline ncc
8
patients
7
ncc
7

Similar Publications

Mechanisms of Copper-Induced Autophagy and Links with Human Diseases.

Pharmaceuticals (Basel)

January 2025

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.

As a structural and catalytic cofactor, copper is involved in many biological pathways and is required for the biochemistry of all living organisms. However, excess intracellular copper can induce cell death due to its potential to catalyze the generation of reactive oxygen species, thus copper homeostasis is strictly regulated. And the deficiency or accumulation of intracellular copper is connected with various pathological conditions.

View Article and Find Full Text PDF

Gut-Heart Axis: Microbiome Involvement in Restrictive Cardiomyopathies.

Biomedicines

January 2025

Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.

An intriguing aspect of restrictive cardiomyopathies (RCM) is the microbiome role in the natural history of the disease. These cardiomyopathies are often difficult to diagnose and so result in significant morbidity and mortality. The human microbiome, composed of billions of microorganisms, influences various physiological and pathological processes, including cardiovascular health.

View Article and Find Full Text PDF

Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.

View Article and Find Full Text PDF

Background & Aim: Twenty-four-hour urinary copper excretion (24 h-UCE) is the standard diagnostic tool for dose adjustments in maintenance therapy in Wilson disease (WD) patients. Guidelines lack data if both variants of 24 h-UCE measurement (with or without 48 h of treatment interruption) are equally interpretable.

Methods: Eighty-four patients with a confirmed diagnosis of WD treated with chelators (50% of patients with D-Penicillamine and 50% with trientine) and with pairwise 24-h-UCE values on-therapy and off-therapy were included in the analysis.

View Article and Find Full Text PDF

Advances in Organic Fluorescent and Colorimetric Probes for The Detection of Cu and Their Applications in Cancer Cell Imaging (2020-2024).

Crit Rev Anal Chem

January 2025

Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia.

Organic fluorescence and colorimetric probes have emerged as vital tools for detecting metal ions, due to their high sensitivity, selectivity, and rapid response times. Copper, an essential trace element, plays a critical role in biological systems, yet its imbalance can lead to severe disorders such as neurodegenerative diseases, cancer, and Wilson's disease. Over the past few years, advancements in probe design have unlocked innovative avenues for not only detecting Cu in environmental and biological samples but also for visualizing its distribution through fluorescence imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!