Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513689 | PMC |
PLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFJ Vet Intern Med
January 2025
School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.
Background: Altered gut microbiota has been associated with dopaminergic degenerative diseases in people, but studies on horses with pituitary pars intermedia dysfunction (PPID) are lacking.
Hypothesis/objectives: Investigate the effect of PPID on fecal microbiota in horses.
Animals: Nine horses with PPID and 13 age-matched control horses.
Acta Parasitol
January 2025
Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Purpose: The thyroid gland is one of the most vital endocrine organs. It is responsible for the synthesis and secretion of hormones principally triiodothyronine (T3) and thyroxine (T4). These hormones play a significant role in the functions and the metabolism of the body.
View Article and Find Full Text PDFActa Parasitol
January 2025
Reproduction Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia- UdeA, Medellín, Antioquia, Colombia.
Purpose: Toxoplasmosis is a worldwide widespread parasitic infection; it affects about 30% of the global population, either through acute toxoplasmosis or its sequels. Even though the male reproductive system is not the primary target for Toxoplasma gondii (T. gondii), studies have inquired into the possibility of presenting repercussions in this system directly or indirectly due to toxoplasmosis.
View Article and Find Full Text PDFImmunol Res
January 2025
Department of Medical Chemistry, Yerevan State Medical University After M. Heratsi, Koryun Str., 0025, Yerevan, Armenia.
Experimental studies of chronic noise exposure in modern urban life testified about oxidative stress due to the corresponding hormones effects leading to accumulation of reactive oxygen species and endothelial dysfunction. This study aims to evaluate the protective effect of α2-adrenoblockers to modulate oxidative stress and corticosterone levels due to chronic noise exposure. To achieve this, we examined the effects of beditin (2-aminothiozolyl-1,4-benzodioxane) and mesedin (2-(2-methyl-amino-thiozolyl)-1,4-benzodioxane hydrochloride), along with changes in corticosterone, Ca2 + content, and morphological alterations in various tissues under noise-induced stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!