Surfactant-assisted electromembrane extraction coupled with cyclodextrin-modified capillary electrophoresis was developed for the separation and determination of Tranylcypromine enantiomers in biological samples. This combination would provide a new strategy for selective and sensitive determination of target analytes. The addition of surfactant in the donor solution improved the analyte transport into the lumen of hollow fiber that resulted in an enhancement in the analytes migration into acceptor solution. Optimization of the variables, affecting proposed method, was carried out and best results were achieved with a 175 V potential as driving force of the electromembrane extraction, 2-nitrophenyloctylether as the supported liquid membrane, donor solution containing 0.2 mM Triton X-100 with pH 3 and 0.1 M HCl for acceptor solution. Then, the extract was analyzed using cyclodextrin-modified capillary electrophoresis method for separation of Tranylcypromine enantiomers. The best results were obtained with a phosphate running buffer (100 mM, pH 2.0) containing 7% w/v hydroxypropyl-α-cyclodextrin. Under the optimum conditions, a low limit of detection (3.03 ng/mL), good linearity (R > 0.9953), and relative standard deviations below 4.0% (n = 5) were obtained. Finally, this procedure was applied to determine the concentration of Tranylcypromine enantiomers in urine samples with satisfactory results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201700488 | DOI Listing |
Ther Drug Monit
October 2023
Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany ; and.
Eur J Med Chem
December 2017
East China Normal University, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, 3663 North Zhongshan Road, Shanghai, 200062, China. Electronic address:
Aberrant expression of lysine specific histone demethylase 1 (LSD1) has been increasingly associated with numerous cancer cells and several proof-of-concept studies are strongly suggestive of its potential as a druggable target. Tranylcypromine (TCP) is an antidepressant originally known to target the monoamine oxidases A and B (MAO-A and MAO-B), which are structurally related to LSD1. A number of TCP derivatives have been identified as potent LSD1 inhibitors, with a handful of them currently being tested in clinical trials.
View Article and Find Full Text PDFJ Sep Sci
January 2018
Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran.
Surfactant-assisted electromembrane extraction coupled with cyclodextrin-modified capillary electrophoresis was developed for the separation and determination of Tranylcypromine enantiomers in biological samples. This combination would provide a new strategy for selective and sensitive determination of target analytes. The addition of surfactant in the donor solution improved the analyte transport into the lumen of hollow fiber that resulted in an enhancement in the analytes migration into acceptor solution.
View Article and Find Full Text PDFJ Med Chem
February 2016
Department of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
We report the stereoselective synthesis and biological activity of a novel series of tranylcypromine (TCPA) derivatives (14a-k, 15, 16), potent inhibitors of KDM1A. The new compounds strongly inhibit the clonogenic potential of acute leukemia cell lines. In particular three molecules (14d, 14e, and 14g) showing selectivity versus MAO A and remarkably inhibiting colony formation in THP-1 human leukemia cells, were assessed in mouse for their preliminary pharmacokinetic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!