Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice.

Biochem Biophys Res Commun

Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China. Electronic address:

Published: December 2017

The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.09.166DOI Listing

Publication Analysis

Top Keywords

salt stress
12
aba salt
12
calcium-dependent protein
8
response aba
8
oscpk21 phosphorylates
8
phosphorylates osgf14e
8
osgf14e
5
protein kinase
4
kinase phosphorylates
4
phosphorylates 14-3-3
4

Similar Publications

BcWRKY25-BcWRKY33A-BcLRP1/BcCOW1 module promotes root development for improved salt tolerance in Bok choy.

Hortic Res

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, No.1 Weigang Road, Xuanwu District, Nanjing 210095, China.

Root development is a complex process involving phytohormones and transcription factors. Our previous research has demonstrated that is significantly expressed in Bok choy roots under salt stress, and heterologous expression of increases salt tolerance and promotes root development in transgenic . However, the precise molecular mechanisms by which BcWRKY33A governs root development remain elusive.

View Article and Find Full Text PDF

Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions.

Front Plant Sci

January 2025

Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China.

Introduction: Salt stress significantly affects plant growth, and Na has gained attention for its potential to enhance plant adaptability to saline conditions. However, the interactions between Na, plants, and rhizosphere bacterial communities remain unclear, hindering a deeper understanding of how Na contributes to plant resilience under salt stress.

Methods: This study aimed to investigate the mechanisms through which Na promotes alfalfa's adaptation to salt stress by modifying rhizosphere bacterial communities.

View Article and Find Full Text PDF

Background: Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.

Objective: We conducted a transcriptome analysis of G.

View Article and Find Full Text PDF

Background: Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions.

View Article and Find Full Text PDF

Specificity of Amino Acid Profiles Produced in Soybean Fermentations by Three spp.

J Microbiol Biotechnol

December 2024

Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.

We compared the salt tolerance and proteolytic activity of 120 strains of each of , , and . Most strains exhibited growth in 12% (w/v) NaCl and showed proteolytic activity in 10% or 11% NaCl. The majority of strains grew in 14% NaCl and showed proteolytic activity in 12% or 13% NaCl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!