The functionally important switch loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11-amino-acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutions on the PC1-proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway toward the deep binding pocket. Two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2017.09.018 | DOI Listing |
Diabetol Int
January 2025
Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo 143-8541 Japan.
Unlabelled: The hybrid closed-loop (HCL) system, Medtronic MiniMed 770G, has been available for use by Japanese individuals with type 1 diabetes mellitus since 2021. The aim of this study was to evaluate the effect of its use on glycemic variability and quality of life (QOL) in this population. This multicenter, open-label, prospective observational study included 14 Japanese individuals with type 1 diabetes mellitus treated with MiniMed 640G.
View Article and Find Full Text PDFTerahertz reconfigurable intelligent surfaces (RIS) stand out from conventional phased arrays thanks to their unique electromagnetic properties and intelligent interconnect paradigms. They are a vital technology for terahertz wireless communication and radar detection systems. Compared with 1-bit coding metasurfaces, 2-bit coding metasurfaces offer significant advantages such as single beam steering and reduced quantization errors.
View Article and Find Full Text PDFThis study investigates (EIG) in a nanohybrid configuration involving a semiconductor quantum dot (SQD) and a core-shell bimetallic nanoparticle coated with graphene. The goal is to optimize interactions between plasmons and excitons. This is achieved by utilizing nanoparticles covered with graphene, which enhances control over surface plasmons.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Huazhong University of Science and Technology Wuhan National High Magnetic Field Center, No.1037, Luoyu Road, Wuhan, Hubei, 430074, CHINA.
Objective: Pulse parameter controllable transcranial magnetic stimulation (cTMS) devices with fully-controlled semiconductor switches are increasingly being developed, but the primary waveform they generate is often accompanied by ringing, which is due to the resonance between the stimulation coil inductance and the snubber capacitors paired with the switches at the end of the pulse. This study provides a ringing suppression design method to effectively suppress it and reduce its impact on stimulation efficacy.
Methods: A three-pronged design method is developed to suppress the ringing at its source.
Cell Death Dis
January 2025
NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!