Physically effective neutral detergent fiber (peNDF) is the fraction of neutral detergent fiber (NDF) that stimulates chewing activity and contributes to the floating mat of large particles in the rumen. Multiplying dietary NDF by particle size has been used as an estimate of peNDF. In re-evaluating the concept of peNDF, we compared the use of peNDF as dietary NDF × particle size with the use of individual NDF and particle size descriptors (physically adjusted NDF; paNDF) when used with other physical and chemical diet descriptors to predict dry matter (DM) intake (DMI), rumination time, and ruminal pH in lactating dairy cows. The purpose is to ultimately use these equations to estimate diet adequacy to maintain ruminal conditions. Each response variable had 8 models in a 2 (peNDF, paNDF) × 2 (diet, diet and ruminal factors) × 2 (DM, as fed basis) factorial arrangement. Particle size descriptors were those determined with the Penn State Particle Separator. Treatment means (n = 241) from 60 publications were used in backward elimination multiple regression to derive models of response variables. When available, peNDF terms entered equations. Models containing peNDF terms had similar or lower unadjusted concordance correlation coefficients (an indicator of similar or lower accuracy and precision) than did models without peNDF terms. The peNDF models for rumen pH did not differ substantially from paNDF models. This suggests that peNDF can account for some variation in ruminal pH; however, overt advantages of peNDF were not apparent. Significant variables that entered the models included estimated mean particle size; as fed or DM proportions retained on 19- and 8-mm sieves of the Penn State Particle Separator; DMI; dietary concentrations of forage; forage NDF; CP; starch; NDF; rumen-degraded starch and rumen-degraded NDF; and the interaction terms of starch × mean particle size, acid detergent fiber/NDF, and rumination time/DMI. Many dietary factors beyond particle size and NDF were identified as influencing the response variables. In conclusion, these results appear to justify the development of a modeling approach to integrate individual physical and chemical factors to predict effects on factors affecting rumen conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2017-12765 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!