Genes Linking Mitochondrial Function, Cognitive Impairment and Depression are Associated with Endophenotypes Serving Precision Medicine.

Neuroscience

Department of Pharmacodynamics, Semmelweis University, H-1089 Nagyvarad ter 4., Budapest, Hungary; MTA-SE Neuropsychopharmacology & Neurochemistry Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary; NAP-A-SE New Antidepressant Target Research Group, H-1089, Nagyvarad ter 4., Budapest, Hungary. Electronic address:

Published: February 2018

Mitochondria densely populate cells in central nervous system providing essential energy for neurons and influencing synaptic plasticity. Harm to these organelles can impair cognitive performance through damaged neurotransmission and altered Ca homeostasis. Impaired cognition could be one underlying factor which can characterize major depressive disorder, a huge burden for society marked by depressed mood and anhedonia. A growing body of evidence binds mitochondrial dysfunctions with the disease. Cognitive disturbances with different severity are also observable in several patients, suggesting that damage or inherited alterations of mitochondria may have an important role in depression. Since several different biological and environmental factors can lead to depression, mitochondrial changes may represent a significant subgroup of depressive patients although cognitive correlates can remain undiscovered without a specific focus. Hypothesis driven studies instead of GWAS can pinpoint targets relevant only in a subset of depressed population. This review highlights results mainly from candidate gene studies on nuclear DNA of mitochondrion-related proteins, including TOMM40, MTHFD1L, ATP6V1B2 and MAO genes, also implicated in Alzheimer's disease, and alterations in the mitochondrial genome to argue for endophenotypes where impaired mitochondrial function may be the leading cause for depressive symptomatology and parallel cognitive dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2017.09.049DOI Listing

Publication Analysis

Top Keywords

mitochondrial function
8
mitochondrial
5
cognitive
5
genes linking
4
linking mitochondrial
4
function cognitive
4
cognitive impairment
4
impairment depression
4
depression associated
4
associated endophenotypes
4

Similar Publications

The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.

View Article and Find Full Text PDF

Protocol for investigating astrocytic mitochondria in neurons of adult mice using two-photon microscopy.

STAR Protoc

January 2025

Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China. Electronic address:

Under pathological conditions, astrocytes can transfer mitochondria to neurons, where they exert neuroprotective effects. In this context, we present a protocol for capturing astrocytic mitochondria in neurons of adult mice using a two-photon microscope. We describe an approach for constructing a mouse model with combined labeling of astrocytic mitochondria and neurons.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!