We propose a novel approach to cavity-ring-down-spectroscopy (CRDS) in which spectra acquired with a frequency-agile rapid-scanning (FARS) scheme, i.e., with a laser sideband stepped across the modes of a high-finesse cavity, are interleaved with one another by a sub-millisecond readjustment of the cavity length. This brings to time acquisitions below 20 s for few-GHz-wide spectra composed of a very high number of spectral points, typically 3200. Thanks to the signal-to-noise ratio easily in excess of 10 000, each FARS-CRDS spectrum is shown to be sufficient to determine the line-centre frequency of a Doppler broadened line with a precision of 2 parts over 10, thus very close to that of sub-Doppler regimes and in a few-seconds time scale. The referencing of the probe laser to a frequency comb provides absolute accuracy and long-term reproducibility to the spectrometer and makes it a powerful tool for precision spectroscopy and line-shape analysis. The experimental approach is discussed in detail together with experimental precision and accuracy tests on the (30 012) ← (00 001) P12e line of CO at ∼1.57 μm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4999056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!