Effect of chain stiffness for semiflexible macromolecules in array of cylindrical nanoposts.

J Chem Phys

Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.

Published: October 2017

Equilibrium conformation of a semiflexible macromolecule in an array of nanoposts exhibits a non-monotonic behavior both at variation of the chain stiffness and increased crowding imposed by nanoposts. This is a result of the competition between the axial chain extension in channel-like interstitial volumes between nanoposts and the chain partitioning among these volumes. The approximation of a nanopost array as a combination of a quasi-channel and a quasi-slit like geometry semi-qualitatively explains the behavior of a chain in the array. In this approximation, the interstitial spaces are viewed as being of the channel geometry, while the passages between two adjacent posts are viewed as being of the slit geometry. Interestingly, the stiffer chains tend to penetrate more readily through the passage apertures, in the direction perpendicular to the post axes, and thus to occupy more interstitial volumes. This is consistent with the prediction of the free-energy penalty that is lower for a stiffer chain at strong slit-like confinement. These findings can find applications in the control of macromolecular conformations in recent nanotechnological techniques with bio-macromolecules such as a DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4991649DOI Listing

Publication Analysis

Top Keywords

chain stiffness
8
interstitial volumes
8
chain
6
stiffness semiflexible
4
semiflexible macromolecules
4
array
4
macromolecules array
4
array cylindrical
4
nanoposts
4
cylindrical nanoposts
4

Similar Publications

Purpose: Self-management is the intrinsically controlled ability of an active, responsible, informed and autonomous individual to live with the medical, role and emotional consequences of his chronic conditions in partnership with his social network and the healthcare providers. This study evaluated the self-management behaviours of patients with rheumatoid arthritis and assess the association between health beliefs and self-management behaviours.

Methods: This cross-sectional study investigated 269 rheumatoid arthritis patients' self-management behaviours using the Self-Care Behaviours Scale with a score of 0-4 for each item and a total score of 0-100 points, and health beliefs using the Arthritis Health Belief Inventory with a score of 1-5 for each item and a total score of 0-165 points.

View Article and Find Full Text PDF

In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes.

View Article and Find Full Text PDF

Volumetric bioprinting of the osteoid niche.

Biofabrication

January 2025

Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, BELGIUM.

Volumetric bioprinting has revolutionized the field of biofabrication by enabling the creation of cubic centimeter-scale living constructs at faster printing times (in the order of seconds). However, a key challenge remains: developing a wider variety of available osteogenic bioinks that allow osteogenic maturation of the encapsulated cells within the construct. Herein, the bioink exploiting a step-growth mechanism (norbornene-norbornene functionalized gelatin in combination with thiolated gelatin - GelNBNBSH) outperformed the bioink exploiting a chain-growth mechanism (gelatin methacryloyl - GelMA), as the necessary photo-initiator concentration was three times lower combined with a more than 50 % reduction in required light exposure dose resulting in an improved positive and negative resolution.

View Article and Find Full Text PDF

Unraveling Cholesterol-Dependent Interactions of Alkylphospholipids with Supported Lipid Bilayers.

Langmuir

January 2025

School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Alkylphospholipids are single-chain lipid amphiphiles that possess clinically relevant biological activities driven by membrane-destabilizing interactions. Subtle variations in alkylphospholipid structure can lead to significant differences in their biological effects, yet corresponding membrane interactions remain underexplored. Herein, we employed the quartz crystal microbalance-dissipation (QCM-D) technique to characterize the real-time membrane interactions of three alkylphospholipids-edelfosine, miltefosine, and perifosine-on supported lipid bilayers with varying cholesterol fractions.

View Article and Find Full Text PDF

Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis.

Inflammopharmacology

January 2025

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.

Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!