Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the greatest challenges in anti-doping science is the large number of substances available and the difficulty in finding the best analytical targets to detect their misuse. Therefore, metabolism studies involving prohibited substances are fundamental. However, metabolism studies in humans could face an important ethical bottleneck, especially for non-approved substances. An emerging model for metabolism assessment is the zebrafish, due to its genetic similarities with humans. In the present study, the ability of adult zebrafish to produce metabolites of sibutramine and stanozolol, substances with a well-known metabolism that are widely used as doping agents in sports, was evaluated. They represent 2 of the most abused classes of doping agents, namely, stimulants and anabolic steroids. These are classes that have been receiving attention because of the upsurge of synthetic analogues, for which the side effects in humans have not been assessed. The samples collected from the zebrafish tank water were hydrolysed, extracted by solid-phase extraction, and analysed by liquid chromatography with high resolution mass spectrometry (LC-HRMS). Adult zebrafish could produce several sibutramine and stanozolol metabolites, including demethylated, hydroxylated, dehydroxylated, and reduced derivatives, all of which have already been detected in human urine. This study demonstrates that adult zebrafish can absorb, oxidise, and excrete several metabolites in a manner similar to humans. Therefore, adult zebrafish seem to be a very promising tool to study human-like metabolism when aiming to find analytical targets for doping control. Copyright © 2017 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dta.2318 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!