AI Article Synopsis

Article Abstract

Laser-capture microdissection (LCM) enables isolation of single cells or groups of cells for a variety of downstream applications including transcriptome profiling. Recently, this methodology has found a more widespread use particularly with the advent of next-generation sequencing techniques that enable deep profiling of the limited amounts of RNA obtained from fixed or frozen sections. When used with fixed tissues, a major experimental challenge is to balance the tissue integrity needed for microscopic visualization of the cell types of interest with that of the RNA quality necessary for deep profiling. Complex biological structures such as seeds or kernels pose an especially difficult case in this context as in many instances the key internal structures such as the embryo and the endosperm are relatively inaccessible. Here, we present an optimized LCM protocol for maize kernel that has been developed specifically to enable profiling of the early stages of endosperm development using RNA-Seq.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7315-6_9DOI Listing

Publication Analysis

Top Keywords

laser-capture microdissection
8
maize kernel
8
deep profiling
8
microdissection maize
4
kernel compartments
4
compartments rna-seq-based
4
rna-seq-based expression
4
expression analysis
4
analysis laser-capture
4
microdissection lcm
4

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions.

View Article and Find Full Text PDF

The aerial epidermis is a major site of quinolizidine alkaloid biosynthesis in narrow-leafed lupin.

New Phytol

January 2025

Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.

Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks.

View Article and Find Full Text PDF

Effects of periodontal disease on the proteomic profile of the periodontal ligament.

J Proteomics

January 2025

Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.

Periodontal disease affects over 1 billion people globally. This study investigated how periodontitis affects the protein profile of the periodontal ligament (PDL) in rats. Eight Holtzman rats were divided into the control and experimental periodontitis groups.

View Article and Find Full Text PDF

Endometrial decidualization resistance (DR) is implicated in various gynecological and obstetric conditions. Here, using a multi-omic strategy, we unraveled the cellular and molecular characteristics of DR in patients who have suffered severe preeclampsia (sPE). Morphological analysis unveiled significant glandular anatomical abnormalities, confirmed histologically and quantified by the digitization of hematoxylin and eosin-stained tissue sections.

View Article and Find Full Text PDF

Current assays fail to address breast cancer's complex biology and accurately predict treatment response. On a retrospective cohort of 1082 female breast tissues, we develop and validate mFISHseq, which integrates multiplexed RNA fluorescent in situ hybridization with RNA-sequencing, guided by laser capture microdissection. This technique ensures tumor purity, unbiased whole transcriptome profiling, and explicitly quantifies intratumoral heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!