Genetic transformation of maize inbred genotypes remains non-routine for many laboratories due to variations in cell competency to induce embryogenic callus, as well as the cell's ability to receive and incorporate transgenes into the genome. This chapter describes two transformation protocols using Agrobacterium- and biolistic-mediated methods for gene delivery. Immature zygotic embryos of maize inbred B104, excised from ears harvested 10-14 days post pollination, are used as starting explant material. Disarmed Agrobacterium strains harboring standard binary vectors and the biolistic gun system Bio-Rad PDS-1000/He are used as gene delivery systems. The herbicide resistant bar gene and selection agent bialaphos are used for identifying putative transgenic type I callus events. Using the step-by-step protocols described here, average transformation frequencies (number of bialaphos resistant T callus events per 100 explants infected or bombarded) of 4% and 8% can be achieved using the Agrobacterium- and biolistic-mediated methods, respectively. An estimated duration of 16-21 weeks is needed using either protocol from the start of transformation experiments to obtaining putative transgenic plantlets with established roots. In addition to laboratory in vitro procedures, detailed greenhouse protocols for producing immature ears as transformation starting material and caring for transgenic plants for seed production are also described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7315-6_2 | DOI Listing |
Front Plant Sci
November 2021
Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina.
Grapevine, as other woody perennials, has been considered a recalcitrant crop to produce transgenic plants. Since the production of transgenic and/or edited plants requires the ability to regenerate plants from transformed tissues, this step is often the biggest bottleneck in the process. The objective of this work is to review the state of the art technologies and strategies for the improvement of grapevine transformation and regeneration, focusing on three aspects: (i) problems associated with grapevine transformation; (ii) genes that promote grapevine regeneration; and (iii) vehicles for gene delivery.
View Article and Find Full Text PDFPlanta
July 2021
Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-901, Brazil.
Plants (Basel)
June 2020
Gulf Coast Research and Education Center, IFAS, University of Florida, 14625 County Road 672, Wimauma, FL 33598, USA.
Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. In the United States, this disease is associated with a phloem-restricted bacterium, Liberibacter asiaticus. Commercial citrus cultivars are susceptible to HLB, but , a close relative of , is highly tolerant of HLB.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France.
Monoterpene indole alkaloids (MIAs) are specialized metabolites synthesized in many plants of the Apocynaceae family including Catharanthus roseus and Rauvolfia sp. MIAs are part of the chemical arsenal that plants evolved to face pet and herbivore attacks, and their high biological activities also confer pharmaceutical properties exploited in human pharmacopeia. Developing robust and straightforward tools to elucidate each step of MIA biosynthetic pathways thus constitutes a prerequisite to the understanding of Apocynaceae defense mechanisms and to the exploitation of MIA cytotoxicity through their production by metabolic engineering.
View Article and Find Full Text PDFMethods Mol Biol
February 2021
TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India.
Plant genetic transformation is an important technological advancement in modern science, which has not only facilitated gaining fundamental insights into plant biology but also started a new era in crop improvement and commercial farming. However, for many crop plants, efficient transformation and regeneration still remain a challenge even after more than 30 years of technical developments in this field. Recently, FokI endonuclease-based genome editing applications in plants offered an exciting avenue for augmenting crop productivity but it is mainly dependent on efficient genetic transformation and regeneration, which is a major roadblock for implementing genome editing technology in plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!