During tooth root development, stem cells from apical papillae (SCAPs) are indispensable, and their abilities of proliferation, migration and odontoblast differentiation are linked to root formation. Leucine-rich repeat-containing GPCR 4 (LGR4) modulates the biological processes of proliferation and differentiation in multiple stem cells. In this study, we showed that LGR4 is expressed in all odontoblast cell lineage cells and Hertwig's epithelial root sheath (HERS) during the mouse root formation in vivo. In vitro we determined that LGR4 is involved in the Wnt/β-catenin signaling pathway regulating proliferation and odonto/osteogenic differentiation of SCAPs. Quantitative reverse-transcription PCR (qRT-PCR) confirmed that LGR4 is expressed during odontogenic differentiation of SCAPs. CCK8 assays and in vitro scratch tests, together with cell cycle flow cytometric analysis, demonstrated that downregulation of LGR4 inhibited SCAPs proliferation, delayed migration and arrested cell cycle progression at the S and G2/M phases. ALP staining revealed that blockade of LGR4 decreased ALP activity. QRT-PCR and Western blot analysis demonstrated that LGR4 silencing reduced the expression of odonto/osteogenic markers (RUNX2, OSX, OPN, OCN and DSPP). Further Western blot and immunofluorescence studies clarified that inhibition of LGR4 disrupted β-catenin stabilization. Taken together, downregulation of LGR4 gene expression inhibited SCAPs proliferation, migration and odonto/osteogenic differentiation by blocking the Wnt/β-catenin signaling pathway. These results indicate that LGR4 might play a vital role in SCAPs proliferation and odontoblastic differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10735-017-9737-0 | DOI Listing |
Int Endod J
December 2024
Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
Aim: Cannabidiol (CBD), derived from the Cannabis sativa plant, exhibits benefits in potentially alleviating a number of oral and dental pathoses, including pulpitis and periodontal diseases. This study aimed to explore the impact of CBD on several traits of human dental pulp stem cells (hDPSC), such as their proliferation, apoptosis, migration and odonto/osteogenic differentiation.
Methodology: hDPSCs were harvested from human dental pulp tissues.
Int Endod J
February 2025
Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Aim: Human stem cells derived from the apical papilla (SCAPs) are recognized for their multilineage differentiation potential and their capacity for functional tooth root regeneration. However, the molecular mechanisms underlying odonto/osteogenic differentiation remain largely unexplored. In this study, we utilized single-cell RNA sequencing (scRNA-seq) to conduct an in-depth analysis of the transcriptional changes associated with chemically induced osteogenesis in SCAPs.
View Article and Find Full Text PDFInt Endod J
November 2024
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Aim: The regenerative capacity of dental pulp relies on the odonto/osteogenic differentiation of dental pulp cells (DPCs), but dynamic microenvironmental changes hinder the process. Bone morphogenetic protein 9 (BMP9) promotes differentiation of DPCs towards an odonto/osteogenic lineage, forming dentinal-like tissue. However, the molecular mechanism underlying its action remains unclear.
View Article and Find Full Text PDFBiomolecules
March 2024
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
In pulpitis, dentinal restorative processes are considerably associated with undifferentiated mesenchymal cells in the pulp. This study aimed to investigate strategies to improve the odonto/osteogenic differentiation of dental pulp stem cells (DPSCs) in an inflammatory environment. After pretreatment of DPSCs with 20 ng/mL tumor necrosis factor-induced protein-6 (TSG-6), DPSCs were cultured in an inflammation-inducing solution.
View Article and Find Full Text PDFOral Dis
October 2024
Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!