The Lateral Habenula and Its Input to the Rostromedial Tegmental Nucleus Mediates Outcome-Specific Conditioned Inhibition.

J Neurosci

Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Kensington, New South Wales 2052, Australia, and

Published: November 2017

Animals can readily learn that stimuli predict the absence of specific appetitive outcomes; however, the neural substrates underlying such outcome-specific conditioned inhibition remain largely unexplored. Here, using female and male rats as subjects, we examined the involvement of the lateral habenula (LHb) and of its inputs onto the rostromedial tegmental nucleus (RMTg) in inhibitory learning. In these experiments, we used backward conditioning and contingency reversal to establish outcome-specific conditioned inhibitors for two distinct appetitive outcomes. Then, using the Pavlovian-instrumental transfer paradigm, we assessed the effects of manipulations of the LHb and the LHb-RMTg pathway on that inhibitory encoding. In control animals, we found that an outcome-specific conditioned inhibitor biased choice away from actions delivering that outcome and toward actions earning other outcomes. Importantly, this bias was abolished by both electrolytic lesions of the LHb and selective ablation of LHb neurons using Cre-dependent Caspase3 expression in Cre-expressing neurons projecting to the RMTg. This deficit was specific to conditioned inhibition; an excitatory predictor of a specific outcome-biased choice toward actions delivering the same outcome to a similar degree whether the LHb or the LHb-RMTg network was intact or not. LHb lesions also disrupted the ability of animals to inhibit previously encoded stimulus-outcome contingencies after their reversal, pointing to a critical role of the LHb and of its inputs onto the RMTg in outcome-specific conditioned inhibition in appetitive settings. These findings are consistent with the developing view that the LHb promotes a negative reward prediction error in Pavlovian conditioning. Stimuli that positively or negatively predict rewarding outcomes influence choice between actions that deliver those outcomes. Previous studies have found that a positive predictor of a specific outcome biases choice toward actions delivering that outcome. In contrast, a negative predictor of an outcome biases choice away from actions earning that outcome and toward other actions. Here we reveal that the lateral habenula is critical for negative predictors, but not positive predictors, to affect choice. Furthermore, these effects were found to require activation of lateral habenula inputs to the rostromedial tegmental nucleus. These results are consistent with the view that the lateral habenula establishes inhibitory relationships between stimuli and food outcomes and computes a negative prediction error in Pavlovian conditioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596488PMC
http://dx.doi.org/10.1523/JNEUROSCI.3415-16.2017DOI Listing

Publication Analysis

Top Keywords

lateral habenula
20
outcome-specific conditioned
20
choice actions
20
conditioned inhibition
16
rostromedial tegmental
12
tegmental nucleus
12
actions delivering
12
delivering outcome
12
appetitive outcomes
8
lhb
8

Similar Publications

Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model.

View Article and Find Full Text PDF

Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release.

View Article and Find Full Text PDF

The basal ganglia (BG) are an evolutionarily conserved and phylogenetically old set of sub-cortical nuclei that guide action selection, evaluation, and reinforcement. The entopeduncular nucleus (EP) is a major BG output nucleus that contains a population of GABA/glutamate cotransmitting neurons (EP) that specifically target the lateral habenula (LHb) and whose function in behavior remains mysterious. Here, we use a probabilistic switching task that requires an animal to maintain flexible relationships between action selection and evaluation to examine when and how GABA/glutamate cotransmitting neurons contribute to behavior.

View Article and Find Full Text PDF

The role of sleep quality in mediating the relationship between habenula volume and resilience.

Psychiatry Res

February 2025

Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan; Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Saitama, Japan; The General Research Division, Osaka University Research Center on Ethical, Legal and Social Issues, Kyoto, Japan. Electronic address:

Background: Our human volumetric MRI study (Dai et al., 2024) demonstrated that habenula (Hb) volume is associated with psychological resilience, a key protective factor against depression. However, the biological mechanisms underpinning this relationship remain unclear.

View Article and Find Full Text PDF

Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!